Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Extracting Standard Error from Gaussian GLM and Poisson GLM Models

  • vlogize
  • 2025-05-25
  • 4
Extracting Standard Error from Gaussian GLM and Poisson GLM Models
How do i extract the standard error from a gaussian GLM model?glmstandard error
  • ok logo

Скачать Extracting Standard Error from Gaussian GLM and Poisson GLM Models бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Extracting Standard Error from Gaussian GLM and Poisson GLM Models или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Extracting Standard Error from Gaussian GLM and Poisson GLM Models бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Extracting Standard Error from Gaussian GLM and Poisson GLM Models

Discover how to effectively extract the `standard error` from Gaussian and Poisson GLM models in R. Improve your statistical analysis with this detailed guide.
---
This video is based on the question https://stackoverflow.com/q/72424364/ asked by the user 'Joe' ( https://stackoverflow.com/u/18338223/ ) and on the answer https://stackoverflow.com/a/72426222/ provided by the user 'Ben Bolker' ( https://stackoverflow.com/u/190277/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How do i extract the standard error from a gaussian GLM model?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Extracting Standard Error from Gaussian GLM and Poisson GLM Models

In statistical modeling, especially when using Generalized Linear Models (GLMs) such as the Gaussian and Poisson models, it’s important to understand how to extract the standard error of your estimates. Understanding these concepts can enhance the interpretability and quality of your results. Let’s address the question of how to extract the standard error from both types of models in R.

Understanding the Problem

You might wonder about the best way to retrieve the standard errors after fitting Gaussian and Poisson GLMs. The standard error gives you an idea of how accurate your estimates are, and it's essential for hypothesis testing and confidence interval construction. The following code snippet simulates data and fits both models:

[[See Video to Reveal this Text or Code Snippet]]

Extracting Standard Error for Gaussian GLM

To extract the standard error from the Gaussian GLM, you can use the sigma() function in R.

Using the sigma() Function

The sigma() function extracts the estimated standard deviation of the residuals, also known as the residual standard error. Here’s how you do it for the Gaussian model:

[[See Video to Reveal this Text or Code Snippet]]

This function works well for linear models and will provide you with the expected value.

Example Calculation

Here’s a check to see if sigma() produces equivalent results:

[[See Video to Reveal this Text or Code Snippet]]

Extracting Standard Error for Poisson GLM

Now, extracting standard error from a Poisson GLM differs slightly from the Gaussian counterpart. While you can still use sigma():

Using the sigma() Function for Poisson

[[See Video to Reveal this Text or Code Snippet]]

However, here’s where it gets tricky. The sigma() function will return the square root of the deviance divided by the number of observations, which isn’t the same as the standard error computed directly from residuals.

Manual Calculation for Accuracy

To get a more accurate standard error, calculate it manually using the residuals type set to "response":

[[See Video to Reveal this Text or Code Snippet]]

Important Note

If you want to compare model fits, consider metrics such as the Akaike Information Criterion (AIC), which offers a more standardized approach to assess the goodness of fit for statistical models.

Additional Recommendations

Avoid unnecessary data manipulation: Adding a small constant (like 0.1) to your response variable can lead to warnings and isn’t necessary for the models fit in this context.

Specify starting values: For the log-link Gaussian model, be sure to specify starting values, which can be done as follows:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Extracting standard errors from Gaussian and Poisson GLMs is integral in statistical analysis. Understanding functions like sigma() and manual calculations help ensure you get accurate estimates. With these techniques, you can confidently interpret your GLM results and improve your overall analysis.

With this guide, you should now have a clearer understanding of how to work with standard errors in GLMs. Happy analyzing!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]