Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Concatenate Rows of Two DataFrames with Different Columns in Python Pandas

  • vlogize
  • 2025-05-25
  • 1
How to Concatenate Rows of Two DataFrames with Different Columns in Python Pandas
  • ok logo

Скачать How to Concatenate Rows of Two DataFrames with Different Columns in Python Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Concatenate Rows of Two DataFrames with Different Columns in Python Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Concatenate Rows of Two DataFrames with Different Columns in Python Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Concatenate Rows of Two DataFrames with Different Columns in Python Pandas

Discover a simple method to concatenate two pandas DataFrames with different columns by using Python, transforming your data efficiently.
---
This video is based on the question https://stackoverflow.com/q/71098110/ asked by the user 'MathMan 99' ( https://stackoverflow.com/u/12244355/ ) and on the answer https://stackoverflow.com/a/71098265/ provided by the user 'Shubham Sharma' ( https://stackoverflow.com/u/12833166/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Python: concat rows of two dataframes where not all columns are the same

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Concatenate Rows of Two DataFrames with Different Columns in Python Pandas

Python's powerful data manipulation library, Pandas, often handles various data structures, like DataFrames. As Analysts and Data Scientists work with data, they frequently encounter situations where they need to combine data from different sources or DataFrames with different columns. Today, we will dive into an interesting problem: how to concatenate the rows of two DataFrames when not all columns are the same.

The Problem

Let's say we have two DataFrames, df1 and df2, with the following structures:

DataFrame 1 (df1)

timestampaccount_idorder_idUSDCAD2022-01-01usdcad11233123142022-01-02usdcad12313213252022-01-03usdcad1234124236DataFrame 2 (df2)

timestampaccount_idcurrencybalance2021-12-21usdcadUSD22021-12-21usdcadCAD3The goal is to add a new row to df1 at index 0, using the balance values from df2 based on currency. After this operation, our final DataFrame (df) should look like this:

timestampaccount_idorder_idUSDCAD000232022-01-01usdcad11233123142022-01-02usdcad12313213252022-01-03usdcad1234124236The Solution

To achieve this in a seamless and effective manner, we can utilize a couple of Pandas operations. Here's a step-by-step guide to solve the problem.

Step 1: Set the Index

First, we will set the index of df2 to the currency column. This action will help us later when accessing the balance values easily.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Transpose the DataFrame

Now, we transpose the DataFrame so that the rows become columns. This step will allow us to combine the DataFrames properly.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Append and Fill Missing Values

We will now append the transposed df2 to df1. To help manage any missing data that might occur, we will use the ignore_index=True parameter and fill any resulting NaN values with 0.

[[See Video to Reveal this Text or Code Snippet]]

Final Output

To see the result, simply print the combined DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

The resulting DataFrame should look like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Combining DataFrames in Pandas, when they have different columns, is a common yet critical data manipulation task for data professionals. By following these organized steps, you can efficiently create a cohesive DataFrame that integrates your data seamlessly.

Whether you are a beginner or an expert, mastering these small but powerful operations can significantly boost your data wrangling skills. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]