Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Optimizing MongoDB Regex Scans for Email Domains: A Guide to Efficient Lookups

  • vlogize
  • 2025-09-14
  • 0
Optimizing MongoDB Regex Scans for Email Domains: A Guide to Efficient Lookups
mongoDB Regex Scan Optimization - Suffix based?mongodb
  • ok logo

Скачать Optimizing MongoDB Regex Scans for Email Domains: A Guide to Efficient Lookups бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Optimizing MongoDB Regex Scans for Email Domains: A Guide to Efficient Lookups или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Optimizing MongoDB Regex Scans for Email Domains: A Guide to Efficient Lookups бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Optimizing MongoDB Regex Scans for Email Domains: A Guide to Efficient Lookups

Learn how to optimize `MongoDB` regex scans when searching for email domains. Discover effective strategies for improving performance while keeping your data intact.
---
This video is based on the question https://stackoverflow.com/q/62451671/ asked by the user 'SerialEnabler' ( https://stackoverflow.com/u/10993407/ ) and on the answer https://stackoverflow.com/a/62453673/ provided by the user 'D. SM' ( https://stackoverflow.com/u/9540925/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: mongoDB Regex Scan Optimization - Suffix based?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Optimizing MongoDB Regex Scans for Email Domains: A Guide to Efficient Lookups

When working with MongoDB, one common challenge is efficiently searching for data, especially when dealing with large collections like email addresses. If you've ever needed to look up an email domain, you may have experienced the limitations of regex scans. While looking up usernames with a prefix works efficiently, searching for domains can slow down the entire process considerably. In this guide, we will explore this issue and offer a practical solution to optimize your queries.

The Problem: Sluggish Domain Searches

When you perform a regex scan based on the username prefix, you can enjoy quick lookups due to the way indexes function in MongoDB. For example:

[[See Video to Reveal this Text or Code Snippet]]

This query runs efficiently because it utilizes the prefix-based search and makes the best use of the existing index on the "Email" field.

However, the moment you switch to searching for a domain, the situation changes drastically:

[[See Video to Reveal this Text or Code Snippet]]

This type of query results in a significant performance drop, taking 10-20 times longer. The fundamental issue here is that non-prefixed regex scans do not benefit from the existing indexes in the same way, leading to latency in retrieval.

What About Suffix Regex Scans?

Some users might try to optimize their domain searches by employing suffix regex patterns, as illustrated below:

[[See Video to Reveal this Text or Code Snippet]]

Unfortunately, this approach doesn't yield much improvement either due to the same indexing limitations. So, what can you do?

The Solution: Extract and Store Domains

Here's a straightforward solution: instead of querying directly against the email field, you can first extract the domain from the email addresses and store it in a separate field. This way, you can leverage a prefix-based regex match on that domain field, which benefits from indexing.

Steps to Implement the Solution:

Data Migration: Create a new field in your collection to store the domain of each email. You can use a script or an aggregation pipeline for this.

[[See Video to Reveal this Text or Code Snippet]]

This MongoDB aggregation pipeline splits each email by the "@ " character and takes the second part (the domain) to store in a new field called "Domain".

Create an Index on the New Domain Field:

[[See Video to Reveal this Text or Code Snippet]]

By indexing the new domain field, you will be able to perform efficient searches on the domains.

Update Your Queries: Modify your queries to search against the new domain field instead of the email field.

[[See Video to Reveal this Text or Code Snippet]]

This query will run efficiently, utilizing the prefix match and the index.

Benefits of This Approach

Improved Performance: By indexing the domain field and using prefix searches, you can achieve faster query responses.

Data Integrity: Existing email data is preserved, and the new domain field does not alter any current records.

Conclusion

Effectively optimizing your MongoDB regex scans for emails can significantly enhance performance, especially when searching for domains. By extracting and indexing the domain data, you switch to using faster prefix regex matches, leading to quicker, more efficient queries. Adopting this method is a practical way to maintain performance even with larger data sets.

Happy querying! If you have any questions or encounter challenges while implementing this solution, feel free to reach out for help.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]