Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Calculate the Distribution Median from a Cumulative Distribution Function in Python

  • vlogize
  • 2025-10-03
  • 0
How to Calculate the Distribution Median from a Cumulative Distribution Function in Python
Calculating Distribution Median from Cumulative Distribution Functionpythonnumpyscipystatistics
  • ok logo

Скачать How to Calculate the Distribution Median from a Cumulative Distribution Function in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Calculate the Distribution Median from a Cumulative Distribution Function in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Calculate the Distribution Median from a Cumulative Distribution Function in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Calculate the Distribution Median from a Cumulative Distribution Function in Python

Discover the step-by-step method to calculate the `distribution median` using a `cumulative distribution function` in Python, making complex statistics simple and understandable.
---
This video is based on the question https://stackoverflow.com/q/62962012/ asked by the user 'Cicilio' ( https://stackoverflow.com/u/11980589/ ) and on the answer https://stackoverflow.com/a/62962590/ provided by the user 'Jan Stránský' ( https://stackoverflow.com/u/2700104/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Calculating Distribution Median from Cumulative Distribution Function

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Distribution Median from CDF

When dealing with probability distributions, one of the important measures is the median, which is the value separating the higher half from the lower half of the data set. However, calculating the median from a Cumulative Distribution Function (CDF) can seem daunting to many. Today, we’ll tackle this problem, breaking it down step-by-step using Python and libraries like numpy and scipy.

Setting up the Density Function

First, we need a defined density function. In our situation, we're working with a piecewise function that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

This function is crucial for evaluating probabilities across different intervals. The areas under the curve actually help in determining the fixed probabilities associated with different sections of the data.

Vectorizing the Density Function

Vectorization is a powerful tool in Python, particularly with the numpy library. It allows you to apply a function over an array efficiently. We can vectorize our density function as follows:

[[See Video to Reveal this Text or Code Snippet]]

Creating the Range of X Values

Next, we need to create an array of X values that covers the range where our density function is defined:

[[See Video to Reveal this Text or Code Snippet]]

This will give us a fine-grained look at our function across a large range of values.

Defining the CDF

The Cumulative Distribution Function can be computed by integrating our density function. Here’s how this is effectively coded:

[[See Video to Reveal this Text or Code Snippet]]

This process involves calculating the area under the curve from negative infinity to each value of x, allowing us to build our CDF.

Finding the Median

To find the median, we want the value of x where the CDF equals 0.5. While the original code attempted to directly match the CDF to 0.5 using approximation, we’ll take a different approach using the bisection method. This method is particularly fitting for non-smooth functions such as ours.

Here’s how you would implement that:

[[See Video to Reveal this Text or Code Snippet]]

Why the Bisection Method?

The bisection method efficiently finds the roots of a function (where it crosses zero), and in our case, it helps find where the CDF equals 0.5, thus determining the median. It’s reliable and suitable for functions that might not be smooth.

Conclusion

By understanding how to calculate the distribution median from CDF using Python, we've simplified what can seem like a complicated statistical concept. Using a vectorized density function, computing the CDF through integration, and finally employing the bisection method illustrates a thorough approach to solving similar probability problems.

Implementing these steps not only enhances your programming skills but also boosts your statistical knowledge, making you better equipped for data analysis tasks in the future!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]