Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Reduce Rows in a DataFrame Based on Specific Conditions

  • vlogize
  • 2025-10-09
  • 0
Efficiently Reduce Rows in a DataFrame Based on Specific Conditions
Python : Drop rows of a dataframe with two specifics conditions and keep the restpythonpandasdataframeduplicatesrows
  • ok logo

Скачать Efficiently Reduce Rows in a DataFrame Based on Specific Conditions бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Reduce Rows in a DataFrame Based on Specific Conditions или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Reduce Rows in a DataFrame Based on Specific Conditions бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Reduce Rows in a DataFrame Based on Specific Conditions

Discover a step-by-step method to efficiently reduce rows of a DataFrame in Python using `pandas` based on specific conditions. Perfect for data manipulation and cleaning tasks!
---
This video is based on the question https://stackoverflow.com/q/64726936/ asked by the user 'Maikiii' ( https://stackoverflow.com/u/14407578/ ) and on the answer https://stackoverflow.com/a/64734375/ provided by the user 'Scott Boston' ( https://stackoverflow.com/u/6361531/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Python : Drop rows of a dataframe with two specifics conditions and keep the rest

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Efficiently Reduce Rows in a DataFrame Based on Specific Conditions

Data manipulation is a common and crucial task in data analysis, especially when working with DataFrames in Python using the pandas library. One typical scenario you may encounter is the need to filter out rows based on specific criteria while keeping certain other rows intact. In this guide, we will explore how to reduce rows in a DataFrame with two specific conditions using pandas in Python.

The Problem: Filtering Rows

Let’s start with an example. Imagine you have the following DataFrame that contains various financial entries and demographic data:

[[See Video to Reveal this Text or Code Snippet]]

This DataFrame contains various columns including names, values, currency fields, and group identifiers.

What Needs to be Done

You want to reduce the DataFrame while applying the following conditions:

Remove rows that contain the string "bal" in the Name column.

Keep only the rows associated with the mode "CLBD" (from the ID_bal_mod column). This means retaining all names associated with the group that includes "CLBD" (in this case, group 2).

Change their group value to 0 without altering the group of other names not containing "bal".

At the end, you should reset the DataFrame index.

The Solution: Step-by-Step Guide

Step 1: Identify Selected Rows

First, we will identify which rows we want to keep based on the conditions listed above.

Find the mode 'CLBD'. We will check which groups contain 'CLBD'.

Create a mask for non-"bal" rows that we want to retain.

Here’s how to do this:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Update Group Values

Now, we will change the 'Group' value of the rows that contain "bal".

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Reset the Index

Lastly, we want to reset the index of the resulting DataFrame.

[[See Video to Reveal this Text or Code Snippet]]

This results in a clean DataFrame with the desired rows removed and group changes made.

The Final Outcome

After applying the above steps, the DataFrame looks like this:

[[See Video to Reveal this Text or Code Snippet]]

As you can see, the DataFrame has been effectively reduced according to the specified conditions, making it easier to work with moving forward.

Conclusion

Manipulating DataFrames in Python can seem daunting at first, but with the right approach, it can be straightforward. By following the method outlined in this post, you can efficiently reduce rows of a DataFrame based on specific conditions, allowing you to focus on relevant data for your analysis.

Whether you are cleaning financial data or working with any other data types, these techniques are sure to enhance your data manipulation skills. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]