Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Actually Learn LLMs in 2026 | Ex-Google, Microsoft Engineer

  • Aishwarya Srinivasan
  • 2026-02-04
  • 44253
How to Actually Learn LLMs in 2026 | Ex-Google, Microsoft Engineer
  • ok logo

Скачать How to Actually Learn LLMs in 2026 | Ex-Google, Microsoft Engineer бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Actually Learn LLMs in 2026 | Ex-Google, Microsoft Engineer или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Actually Learn LLMs in 2026 | Ex-Google, Microsoft Engineer бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Actually Learn LLMs in 2026 | Ex-Google, Microsoft Engineer

If you want to actually understand large language models- not just use ChatGPT, but genuinely understand how these systems work, how to build with them, and how to stay relevant as this field evolves- this video gives you the exact learning path to follow, step by step.

There are hundreds of LLM courses out there right now. Everyone's got a tutorial, everyone's got a certification. And if you're trying to figure out where to start, it can feel completely paralyzing.

Should you jump straight into prompt engineering? Do you need to understand transformers first? What about fine-tuning? What about agents?

In this video, I break down the 4-step path that actually works- the one that gives you lasting understanding rather than just surface-level familiarity.

The 4 Steps:
Step 1: Fundamentals of Machine Learning & Deep Learning
Step 2: Understanding Transformers & the Attention Mechanism
Step 3: LLM Pre-training, Fine-tuning & RAG
Step 4: Applications & AI Agents

Each step builds on the last. Skip the foundation, and the house falls down. This path isn't the fastest, but it's the one that actually works.

Free Resources Mentioned:

Step 1: ML & Deep Learning Fundamentals
Machine Learning Specialization (Andrew Ng): https://www.deeplearning.ai/courses/m...
MIT Introduction to Deep Learning: https://introtodeeplearning.com/

Step 2: Transformers & Attention
Jay Alammar's Illustrated Transformer: https://jalammar.github.io/illustrate...
Hugging Face NLP/LLM Course: https://huggingface.co/learn

Step 3: Pre-training, Fine-tuning & RAG
Cohere's LLM University: https://cohere.com/llmu
DeepLearning.AI – Pretraining LLMs: https://www.deeplearning.ai/short-cou...
DeepLearning.AI – Fine-tuning LLMs: https://www.deeplearning.ai/short-cou...

Step 4: Applications & AI Agents
Hugging Face Agents Course: https://huggingface.co/learn/agents-c...
Berkeley's LLM Agents Course: https://llmagents-learning.org/f24
Arize AI – AI Agents Mastery: https://arize.com/llm-course/
DeepLearning.AI – Multi-AI Agent Systems with CrewAI: https://www.deeplearning.ai/short-cou...

Subscribe for more AI/ML career advice, free learning resources, technical explainers, and my journey as an immigrant in the US building a career as an AI leader.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]