Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Exporting Your kNN Classifier to CoreML: Handling Output Labels and Data Types

  • vlogize
  • 2025-05-28
  • 1
Exporting Your kNN Classifier to CoreML: Handling Output Labels and Data Types
CoreML Output for kNN Classifierpython 3.xnumpyscikit learncoremlcoremltools
  • ok logo

Скачать Exporting Your kNN Classifier to CoreML: Handling Output Labels and Data Types бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Exporting Your kNN Classifier to CoreML: Handling Output Labels and Data Types или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Exporting Your kNN Classifier to CoreML: Handling Output Labels and Data Types бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Exporting Your kNN Classifier to CoreML: Handling Output Labels and Data Types

Discover how to efficiently export your kNN classifier as an .mlmodel file for CoreML, including solutions for using `int8` data types and custom string outputs for predictions.
---
This video is based on the question https://stackoverflow.com/q/65673917/ asked by the user 'GK89' ( https://stackoverflow.com/u/2525781/ ) and on the answer https://stackoverflow.com/a/65700135/ provided by the user 'Matthijs Hollemans' ( https://stackoverflow.com/u/7501629/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: CoreML Output for kNN Classifier

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Exporting Your kNN Classifier to CoreML: Handling Output Labels and Data Types

If you’re developing for iOS and want to use your k-Nearest Neighbors (kNN) model for predictions, exporting it to CoreML is a common task. However, when working with int8 data types and output labels, you might encounter some challenges that can hinder the efficiency of your application. Let's explore the solutions to these problems step-by-step.

Understanding the Problem

While exporting your kNN model to an .mlmodel file, you might run into the following issues:

Data Type Compatibility: CoreML currently does not support the int8 data type, which poses a challenge if you're trying to optimize for memory.

Output Format: Besides numerical outputs like 0 and 1, you may want your model to output human-readable labels such as go or stop instead.

These issues can be hindering your model’s efficiency and usability in a real-world application. Let's learn how to overcome these challenges.

Solution: Data Type Compatibility

Why int8 is Not Supported

CoreML has specific requirements for input data types, and as of now, it does not support int8. Here’s what you can do:

Use int32 Instead: Change your y_train values from int8 to int32. While this might increase the memory footprint, it will allow your model to be processed correctly.

Example Code

Here's a snippet for converting your labels to int32:

[[See Video to Reveal this Text or Code Snippet]]

Solution: Custom Output Labels

If you want your model to output strings like “go” and “stop”, follow these steps:

Editing the .mlmodel File

Convert your Model: Use the CoreML tools to convert your kNN model as you normally would:

[[See Video to Reveal this Text or Code Snippet]]

Modify the Model’s Specification: After conversion, you’ll need to modify the model specification (spec) to replace numerical outputs with strings.

Here's how you can do that:

[[See Video to Reveal this Text or Code Snippet]]

Example Structure

In the code above:

stringClassLabels is populated with the human-readable labels you want to use.

This will allow you to get outputs like “go” when the prediction is 1 and “stop” when it’s 0.

Conclusion

By addressing the data type compatibility and customizing your output labels, you can optimize your kNN classifier for CoreML. While int8 isn’t supported, switching to int32 is an effective workaround. Moreover, modifying the output structure allows users to interact with your model in a more intuitive way.

Implement these strategies for a more efficient integration of your kNN classifier into your iOS applications. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]