Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Solving the PySpark Lag Function Challenge: Calculating C with Ease

  • vlogize
  • 2025-10-11
  • 0
Solving the PySpark Lag Function Challenge: Calculating C with Ease
PySpark Lag functionpyspark
  • ok logo

Скачать Solving the PySpark Lag Function Challenge: Calculating C with Ease бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Solving the PySpark Lag Function Challenge: Calculating C with Ease или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Solving the PySpark Lag Function Challenge: Calculating C with Ease бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Solving the PySpark Lag Function Challenge: Calculating C with Ease

Discover how to correctly implement the `lag` function in PySpark to compute a new column based on previous values. Read on for a clear solution!
---
This video is based on the question https://stackoverflow.com/q/68596574/ asked by the user 'Keerikkattu Chellappan' ( https://stackoverflow.com/u/10613704/ ) and on the answer https://stackoverflow.com/a/68598750/ provided by the user 'anky' ( https://stackoverflow.com/u/9840637/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: PySpark Lag function

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the PySpark Lag Function Challenge

When working with PySpark, you may encounter challenges that require dynamic computations across rows in a DataFrame. One such problem is calculating a new column based on the results of previously computed values. Let's delve into a specific case where we want to create a new column, C, based on the values of two existing columns, A and B.

The Problem

Given a DataFrame with the following structure:

AB20.520.521.021.5We need to define column C with the following logic:

First Row: C = A - B

Subsequent Rows: C = lag(C) - B, where C of the previous row is referenced.

The challenge arises when trying to access lag(C) in the context of its calculation, which leads to difficulties in obtaining the desired results.

The Expected Result

The expected result for column C should look like this:

ABC20.51.520.51.021.00.021.5-1.5You can see the first calculation is straightforward, but subsequent calculations depend on the previous value of C, which isn't directly accessible when using lag on column C.

The Solution

To address this challenge, we can use the cumulative sum of column B, and subtract that from A. Let’s break down the steps you need to implement this solution.

Step 1: Import Required Libraries

Make sure you have the necessary libraries imported. Here’s an initial setup:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Define the Window Specification

Create a Window specification for ordering the DataFrame. It allows us to perform cumulative calculations. Use monotonically_increasing_id() for ordering:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Calculate Column C

Now we can compute column C using the cumulative sum of column B and subtract that from A:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Results

When you execute the above code, you should see the desired output as shown below:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

The challenge of calculating lagged values in PySpark can seem daunting at first, particularly when trying to reference a new column in its own definition. However, by utilizing cumulative operations effectively, you can derive the desired results without running into unresolved references. In this case, computing column C became straightforward with the help of cumulative sums instead of strictly relying on the lag function.

By mastering this technique, you enhance your data manipulation skills in PySpark and pave the way for more complex data transformations in the future.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]