Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Delete Rows in Pandas with Excessively Long Strings

  • vlogize
  • 2025-10-11
  • 0
How to Delete Rows in Pandas with Excessively Long Strings
Delete rows with pandas an excessive length of a string in a fieldpythonpandasjupyter
  • ok logo

Скачать How to Delete Rows in Pandas with Excessively Long Strings бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Delete Rows in Pandas with Excessively Long Strings или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Delete Rows in Pandas with Excessively Long Strings бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Delete Rows in Pandas with Excessively Long Strings

Learn how to efficiently eliminate rows from a Pandas DataFrame with email addresses that exceed a specified character length. This guide provides simple solutions and examples.
---
This video is based on the question https://stackoverflow.com/q/68715276/ asked by the user 'scofx' ( https://stackoverflow.com/u/7110233/ ) and on the answer https://stackoverflow.com/a/68715623/ provided by the user 'mozway' ( https://stackoverflow.com/u/16343464/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Delete rows with pandas an excessive length of a string in a field

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Deleting Rows with Excessively Long Strings in Pandas

Working with data often requires us to clean and preprocess it, especially when dealing with text fields. One common issue is the presence of excessively long strings in certain fields, like email addresses in a DataFrame. In this guide, we will explore how to easily delete rows from a Pandas DataFrame that contain email addresses (or any strings) that exceed a certain length.

The Problem

Imagine you have a DataFrame containing email addresses among other user details. Sometimes, one or more email addresses might be excessively long, which could be problematic for your data analysis or processing steps. Here’s an example of a DataFrame that has this issue:

Example DataFrame

[[See Video to Reveal this Text or Code Snippet]]

In this example, the second email is much longer than typical email addresses. We need a method to automatically remove any rows that contain strings longer than a specified limit (let's say 50 characters).

The Solution

Pandas provides powerful tools to filter DataFrames based on various conditions. Below, we'll outline two efficient methods to delete rows based on string lengths in a specified column.

Method 1: Limiting Email Length to 50 Characters

If you're specifically checking the length of email addresses, you can apply a simple condition directly to the column. Here’s how you can do it:

[[See Video to Reveal this Text or Code Snippet]]

Explanation: This line filters the DataFrame df by checking the length of each email address in the 'email' column using the .str.len() method. Rows with email addresses longer than 50 characters are effectively removed from the DataFrame.

Method 2: Limiting Any String Field to 50 Characters

If you want to ensure that all string fields in your DataFrame do not exceed 50 characters, you can use the applymap method to apply the condition to all columns. Here’s how:

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

applymap: This method applies a function to each element of the DataFrame. In our case, it checks if each value is a string and returns its length.

lt(51): This function checks if the length is less than 51.

all(axis=1): This ensures that the condition must hold true for all columns in a row for it to be included in the final filtered DataFrame.

Conclusion

Cleaning your DataFrame by removing rows with excessively long string fields can significantly enhance your data quality. Whether you're focusing solely on an email field or on multiple string fields, Pandas has powerful tools that make this task straightforward. By using the methods shown above, you can keep your data tidy and ready for analysis.

Feel free to share any questions or experiences you've had with data cleaning in Pandas in the comments below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]