Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Gradient Descent Explained: From Scratch to Advanced in 5 Minutes

  • Duniya Drift
  • 2026-01-17
  • 48
Gradient Descent Explained: From Scratch to Advanced in 5 Minutes
gradient descentmachine learningartificial intelligenceneural networksAI explainedoptimizationmachine learning tutorialdeep learning tutorialdata sciencegradient descent explainedstochastic gradient descentmomentum optimizeradam optimizerlearning rateloss functionneural network traininggradient optimizationhow gradient descent worksgradient descent tutorialneural network optimizationgradient descent pythongradient descent math
  • ok logo

Скачать Gradient Descent Explained: From Scratch to Advanced in 5 Minutes бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Gradient Descent Explained: From Scratch to Advanced in 5 Minutes или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Gradient Descent Explained: From Scratch to Advanced in 5 Minutes бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Gradient Descent Explained: From Scratch to Advanced in 5 Minutes

Discover how Gradient Descent works - the fundamental algorithm that trains EVERY neural network! 🚀 Learn from scratch to advanced variants (SGD, Momentum, ADAM) with stunning 3D visualizations in just 5 minutes.

🎯 WHAT YOU'LL LEARN:
• The blindfolded mountain climber metaphor (intuitive understanding)
• Mathematical foundation: derivatives, gradients, update rules
• The Goldilocks problem: learning rates (too small, too large, just right)
• 3D optimization landscapes: local minima, saddle points, plateaus
• Advanced variants: Stochastic GD, Momentum, ADAM optimizer
• Real-world application: training neural networks with backpropagation
• Limitations & alternatives to gradient descent

⏱️ TIMESTAMPS:
0:00 - Hook: The Blindfolded Mountain Climber
0:40 - Mathematical Foundation: Derivatives & Gradients
1:30 - Learning Rate: The Goldilocks Problem
2:10 - 3D Landscapes: Local Minima & Saddle Points
2:50 - Advanced Variants: SGD, Momentum, ADAM
3:50 - Neural Networks: How AI Actually Learns
4:30 - Limitations & The Future of Optimization

🔬 RIGOROUS VISUALIZATIONS USING:
✓ ManimCE - 3D surfaces and mathematical animations
✓ NumPy - Gradient computations and optimization trajectories
✓ SymPy - Symbolic differentiation and mathematical expressions
✓ Matplotlib - Loss curves and convergence comparisons
✓ Seaborn - Statistical gradient distributions
✓ Real optimization landscapes: Rosenbrock, Rastrigin functions

🎓 KEY CONCEPTS EXPLAINED:
• Update Rule: x_new = x_old - α∇f(x)
• Gradient: ∇f = [∂f/∂x₁, ∂f/∂x₂, ..., ∂f/∂xₙ]ᵀ
• Momentum: v_t = βv_{t-1} + ∇f(x_t)
• ADAM: Combines momentum + adaptive learning rates
• Backpropagation: Computing gradients in neural networks
• Convergence: When to stop iterating

📊 REAL-WORLD IMPACT:
Every major AI breakthrough uses gradient descent:
• GPT-4: 175 billion parameters optimized with gradient descent
• DALL-E 2: Image generation models trained via gradients
• AlphaGo: Policy networks optimized through gradient-based learning
• Self-Driving Cars: Perception models trained with gradient descent

🔥 WHY THIS MATTERS:
Understanding gradient descent is ESSENTIAL for:
Machine learning engineers implementing algorithms
Data scientists training models
AI researchers developing new techniques
Anyone curious how AI actually "learns"

💡 OUT-OF-BOX INSIGHTS:
• Why gradient descent is "greedy" and "blind"
• How noise in SGD actually HELPS escape local minima
• Why ADAM is the default optimizer in PyTorch, TensorFlow, JAX
• The connection between physical intuition and mathematical optimization
• Where gradient descent fails (and what comes next)

📚 ADDITIONAL RESOURCES:
• Momentum Paper: Sutskever et al. (2013)
• Deep Learning Book (Goodfellow): Chapter 8
• 3Blue1Brown: Backpropagation Calculus
• Stanford CS231n: Optimization Lecture Notes

🎓 RELATED VIDEOS IN THIS SERIES:
• Backpropagation Explained:    • (Backpropagation Explained) The 1986 Algor...  
• Neural Networks from Scratch:    • What is a Neural Network? AI & Deep Learni...  
• Convolutions Explained:    • Convolutional Neural Networks Explained: F...  


💬 DISCUSSION QUESTIONS:
1. Have you implemented gradient descent from scratch?
2. Which optimizer do you use most: SGD, Momentum, or ADAM?
3. What's the hardest part of tuning learning rates?
4. Drop your favorite optimization trick in comments!

🔔 SUBSCRIBE for weekly AI/ML explanations with world-class visualizations. No fluff, no hype - just clear, rigorous explanations of cutting-edge concepts.

---

🏷️ TAGS: #gradientdescent #machinelearning #deeplearning #ai #optimization #neuralnetworks #adam #momentum #sgds #backpropagation #datascience #maths #algorithm #tutorial #Education

Комментарии

Информация по комментариям в разработке

Похожие видео

  • Your Phone Listens Even When 'Off' (The Baseband Backdoor) 📱
    Your Phone Listens Even When 'Off' (The Baseband Backdoor) 📱
    6 дней назад
  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]