Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding value_counts() in Pandas: Filtering Results with Conditions

  • vlogize
  • 2025-09-28
  • 0
Understanding value_counts() in Pandas: Filtering Results with Conditions
Using pandas value_counts() under defined conditionpythonpandas
  • ok logo

Скачать Understanding value_counts() in Pandas: Filtering Results with Conditions бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding value_counts() in Pandas: Filtering Results with Conditions или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding value_counts() in Pandas: Filtering Results with Conditions бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding value_counts() in Pandas: Filtering Results with Conditions

Learn how to use Pandas `value_counts()` with conditions effectively. This guide explains the logic behind filtering results using boolean masks in Python.
---
This video is based on the question https://stackoverflow.com/q/63620128/ asked by the user 'jaymzleutz' ( https://stackoverflow.com/u/11591742/ ) and on the answer https://stackoverflow.com/a/63620423/ provided by the user 'Khanis Rok' ( https://stackoverflow.com/u/4701418/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Using pandas value_counts() under defined condition

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding value_counts() in Pandas: Filtering Results with Conditions

Pandas is a powerful library in Python, widely used for data manipulation and analysis. One of its great features is the value_counts() function, which allows users to count occurrences of values within a given column of a DataFrame. However, using this function alongside conditions may seem a bit tricky, especially for beginners.

In this guide, we will break down an example involving value_counts() that counts values that meet specific conditions. By the end of this post, you'll have a clear understanding of how to use this powerful function to improve your data handling skills.

The Problem Defined

Imagine you have a list of vehicle types represented as strings:

[[See Video to Reveal this Text or Code Snippet]]

You want to determine how many times each vehicle type appears in the list, but with a specific condition: you only want to count those that appear more than 2 times.

To accomplish this, the column name in your DataFrame that contains this list is called 'veh'. The target code to achieve this looks like this:

[[See Video to Reveal this Text or Code Snippet]]

But wait! What does the part df['veh'].value_counts() > 2 really mean in the context of this code?

Breaking Down the Solution

Let's dive into the components of the solution step-by-step.

1. Using value_counts()

When you call df['veh'].value_counts(), it returns a pandas Series where:

The index of the Series contains unique values (in this case, the vehicle types).

The values represent the count of occurrences of each unique vehicle type.

Example:

[[See Video to Reveal this Text or Code Snippet]]

2. Filtering with a Boolean Condition

To filter the counts based on our condition (values appearing more than 2 times), we create a boolean mask using the expression:

[[See Video to Reveal this Text or Code Snippet]]

This expression compares each count from value_counts() against the number 2, returning a Series of boolean values:

True if the count is greater than 2

False if the count is 2 or less

Example:

If the result of value_counts() was as shown earlier, the boolean mask would look like this:

[[See Video to Reveal this Text or Code Snippet]]

3. Applying the Boolean Mask

Now that we have our boolean mask, we can use it to filter the original Series:

[[See Video to Reveal this Text or Code Snippet]]

By doing this, you're applying the mask to the Series itself, returning only those vehicle types that appear more than 2 times.

Final Output

Thus, the final output of the entire command gives you just the vehicles that met your condition — in our case, only 'car' would be returned if we were looking at the initial list provided.

Conclusion

Understanding the use of value_counts() combined with boolean conditions can significantly enhance your data manipulation capabilities.

To recap:

value_counts() helps count occurrences within a DataFrame column.

A boolean mask can filter those counts based on specific conditions.

Combining these allows you to extract meaningful insights from your data easily.

Pandas is indeed an awesome library, and with practice, you'll find yourself mastering its functions for effective data analysis. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]