Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть The Best Practice for Reading Multiple Kafka Topics with Spark Streaming

  • vlogize
  • 2025-04-11
  • 5
The Best Practice for Reading Multiple Kafka Topics with Spark Streaming
What is the best way of reading multiple kafka topics in spark streaming?apache sparkpysparkapache kafkaspark structured streaming
  • ok logo

Скачать The Best Practice for Reading Multiple Kafka Topics with Spark Streaming бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно The Best Practice for Reading Multiple Kafka Topics with Spark Streaming или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку The Best Practice for Reading Multiple Kafka Topics with Spark Streaming бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео The Best Practice for Reading Multiple Kafka Topics with Spark Streaming

Discover the most efficient way to read multiple Kafka topics in Spark Streaming, ensuring optimal processing and memory usage for your applications.
---
This video is based on the question https://stackoverflow.com/q/72925761/ asked by the user 'Renan Nogueira' ( https://stackoverflow.com/u/12713471/ ) and on the answer https://stackoverflow.com/a/72927335/ provided by the user 'Svend' ( https://stackoverflow.com/u/3318335/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: What is the best way of reading multiple kafka topics in spark streaming?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
The Best Practice for Reading Multiple Kafka Topics with Spark Streaming

When building applications using Spark Streaming to process data from multiple Kafka topics, developers often face challenges in ensuring optimal performance and efficient use of resources. A common question that arises is: What is the best way to read multiple Kafka topics in Spark Streaming? Understanding the underlying principles is crucial for developing scalable solutions.

Understanding the Problem

You may have a situation where you are reading from multiple Kafka topics, and doing so efficiently is key to your application's performance. For example, consider this code snippet where a for loop is used to read various topics:

[[See Video to Reveal this Text or Code Snippet]]

In this setup, each iteration creates a separate Kafka consumer for each topic, which can lead to inefficiencies in processing and memory use.

The Solution

To optimize your application, you can utilize subscribePattern instead of subscribe. This approach consolidates the processing of multiple topics under a single Kafka consumer group. Here's how it can be implemented effectively:

Step 1: Replace subscribe

In your Spark Streaming application, change the line where you subscribe to individual topics from:

[[See Video to Reveal this Text or Code Snippet]]

To:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Explanation of subscribePattern

Using subscribePattern allows you to define a regular expression that matches your Kafka topic names. As a result, your application will:

Create One Consumer Group:
Behind the scenes, Spark will create a single distributed Kafka consumer group for all partitions of the matched topics, making data processing more efficient.

Unify Spark Lineage:
Instead of creating separate consumer groups and Spark lineage for each topic, all topics will share one Spark lineage, enhancing the efficiency and maintainability of your code.

Advantages of This Approach

Efficiency:
Reducing the number of consumer groups lowers system resource usage and boosts performance.

Automatic Topic Detection:
If new topics matching the regex pattern are created, they will automatically be added to the reading stream after a short delay. The metadata is refreshed based on a configurable option, metadata.max.age.ms, which defaults to 5 minutes.

Scalability:
This method allows your application to scale more effectively by simplifying its architecture while still being flexible enough to adapt to new Kafka topics as they are created.

Conclusion

By utilizing subscribePattern, you can significantly improve the performance and resource utilization of your Spark Streaming application while reading from multiple Kafka topics. This best practice not only streamlines your code but also provides a scalable solution for processing real-time data efficiently.

By adopting these strategies, your application will be better equipped to handle varying workloads while maintaining optimal performance.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]