Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть High trace methods in random matrix theory (Remote Talk) - Lecture 3 by Charles Bordenave

  • International Centre for Theoretical Sciences
  • 2019-04-15
  • 70
High trace methods in random matrix theory (Remote Talk) - Lecture 3 by Charles Bordenave
  • ok logo

Скачать High trace methods in random matrix theory (Remote Talk) - Lecture 3 by Charles Bordenave бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно High trace methods in random matrix theory (Remote Talk) - Lecture 3 by Charles Bordenave или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку High trace methods in random matrix theory (Remote Talk) - Lecture 3 by Charles Bordenave бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео High trace methods in random matrix theory (Remote Talk) - Lecture 3 by Charles Bordenave

PROGRAM :UNIVERSALITY IN RANDOM STRUCTURES: INTERFACES, MATRICES, SANDPILES
ORGANIZERS :Arvind Ayyer, Riddhipratim Basu and Manjunath Krishnapur
DATE & TIME :14 January 2019 to 08 February 2019
VENUE :Madhava Lecture Hall, ICTS, Bangalore

The primary focus of this program will be on the theme of universality in the following three different classes of discrete random structures. All three are active areas of ongoing research.

(1) Randomly growing interfaces and (1+1) dimensional polymer models: A large class of models in this area are believed to exhibit the so-called KPZ universality. Despite intense activity in the last decade, which saw immense progress in the study of exactly solvable models, the understanding of universality beyond integrable models remains rather limited.

(2) Eigenvalues of random matrices and other point processes: Random matrix theory is an area where universality has been shown in non-integrable settings. This owes to fundamental progress in techniques in the last 10 years. Relationships between different aspects of random matrix theory and other branches of probability, or even mathematics at large, continue to be actively explored and developed.

(3) Sandpile models and other Laplacian growth models: In this category we have the DLA, IDLA, Abelian sandpile models, and related topics of rotor walks etc.. Many interesting results have appeared in recent years, however most questions about delicate critical and universal behaviour remain outside the reach of current techniques.

This program aims to bring together leading researchers in these areas from all over the world for a discussion on recent progress and remaining challenges. We plan to have a mini-course each week, aimed at the graduate students and young researchers, together with a number of talks and open problem sessions, and enough free slots for discussions and collaboration between the participants.

The program also includes Infosys-ICTS Srinivasa Ramanujan lecture series by Prof. Sourav Chatterjee (Stanford University).

We will be looking for applications from young researchers, PhD students, post-doctoral researchers, Faculty.
(Advanced undergraduate and masters students will be considered in exceptional cases).

Only applications received before September 30 will receive full consideration.

CONTACT US :urs2019 ictsresin
PROGRAM LINK :https://www.icts.res.in/program/urs2019

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]