Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Group and Sample in R Using Count Data

  • vlogize
  • 2025-08-17
  • 0
Efficiently Group and Sample in R Using Count Data
R sampling into groups of specific size based on count datadplyr
  • ok logo

Скачать Efficiently Group and Sample in R Using Count Data бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Group and Sample in R Using Count Data или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Group and Sample in R Using Count Data бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Group and Sample in R Using Count Data

Discover how to randomly group count data in R into bins of specified size for effective data analysis.
---
This video is based on the question https://stackoverflow.com/q/64868997/ asked by the user 'Moe' ( https://stackoverflow.com/u/5092110/ ) and on the answer https://stackoverflow.com/a/64869564/ provided by the user 'lotus' ( https://stackoverflow.com/u/2835261/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: R sampling into groups of specific size based on count data

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Group and Sample in R Using Count Data

When working with datasets in R, especially those involving count data, you may find yourself needing to organize your data into groups or "bins" of a specific size. For instance, you might want to create bins of a size 20 from a data frame consisting of varying counts across different IDs. This task can be challenging if you need the bins to be filled randomly, without simply taking consecutive rows from the dataset. In this guide, we'll walk through a straightforward solution using R and its powerful dplyr and BBmisc packages.

Problem Overview

Suppose you have a data frame as follows:

[[See Video to Reveal this Text or Code Snippet]]

In this example, each ID has an associated count. Your goal is to randomly sample these IDs to create bins, ensuring that each bin has a total count as close to 20 as possible. If the counts of IDs add up to exactly 20, that's perfect; however, if they fall short of 20, that's acceptable, but exceeding 20 is not.

You'd like your final output to look something like:

[[See Video to Reveal this Text or Code Snippet]]

Our Solution

To tackle this issue, we can utilize the BBmisc package, which provides a simple bin packing algorithm suitable for our needs. We will also leverage the dplyr package for data manipulation. Here's a step-by-step breakdown of how to implement the solution:

Step 1: Install and Load Necessary Packages

Make sure you have the BBmisc and dplyr packages installed. You can install them using the following commands if you haven't done so already:

[[See Video to Reveal this Text or Code Snippet]]

Then, load the packages:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Apply the binPack Function

Now, we can apply the binPack function from the BBmisc package, which will help us group the counts into bins of the specified size. Here’s the complete code:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Understanding the Output

After running the code above, you will receive a data frame (or tibble) that lists each ID along with its count, the assigned bin number, and the total bin size. The bin variable created in the mutate function indicates which bin each ID belongs to.

Example Output

The output will look similar to this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

The binPack function provides an efficient way to group count data into bins of a specified size randomly. Using this method, you can minimize the number of bins while ensuring your bin sizes meet your criteria.

This straightforward approach allows you to handle complex data binning tasks with ease, using R's diverse ecosystem of packages. If you have any questions or need further assistance with your data manipulation tasks, feel free to reach out!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]