Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Initialize Two Sub-Modules in PyTorch with the Same Weights

  • vlogize
  • 2025-05-27
  • 0
How to Initialize Two Sub-Modules in PyTorch with the Same Weights
pytorch initialize two sub-modules with same weights?pytorch
  • ok logo

Скачать How to Initialize Two Sub-Modules in PyTorch with the Same Weights бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Initialize Two Sub-Modules in PyTorch with the Same Weights или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Initialize Two Sub-Modules in PyTorch with the Same Weights бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Initialize Two Sub-Modules in PyTorch with the Same Weights

Learn how to effectively initialize two auto-encoders in PyTorch with the same weights without sharing them. This guide provides a simple and clear method for achieving this using state dictionaries.
---
This video is based on the question https://stackoverflow.com/q/67146226/ asked by the user 'nachtsky' ( https://stackoverflow.com/u/15680300/ ) and on the answer https://stackoverflow.com/a/67147255/ provided by the user 'Shai' ( https://stackoverflow.com/u/1714410/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: pytorch initialize two sub-modules with same weights?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Initialize Two Sub-Modules in PyTorch with the Same Weights

In the world of deep learning, managing the weights of neural network components properly can significantly influence training and performance. A common scenario arises when you need to initialize two sub-modules—in this case, auto-encoders—with the same weights. This guide will guide you through a straightforward approach to ensure that both parts have identical initial values without sharing them.

The Challenge

You may find yourself in a situation where you are building separate auto-encoders for different purposes, such as for handling queries and documents. While you want them to have the same starting point in terms of weights, it’s important to keep them as separate entities. This raises a question:

How can we initialize these modules, ensuring both have the same weights while keeping them distinct?

The Solution

The good news is that this task can be accomplished easily in PyTorch by utilizing the state_dict feature. Here's a step-by-step explanation of how to do this:

Step 1: Initialize One of the Modules

Begin by creating and initializing one of your auto-encoder sub-modules as you normally would. In practice, this can be a random initialization method that fits your model’s needs.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Save the Model’s Weights

Once the first auto-encoder is initialized, you can save its weights using the state_dict() method. This method gathers all the learnable parameters of the model, which allows you to load them later.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Initialize the Second Module

Next, create the second auto-encoder module. At this point, it is initialized in a standard way, which we will not yet alter.

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Load the Weights to the Second Module

Finally, load the saved state dictionary from the first auto-encoder into the second one using the load_state_dict() method. This will set the weights of the second auto-encoder to match those of the first automatically.

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By following these steps, you can easily initialize two auto-encoders in PyTorch with the same initial weights. Remember, this approach allows you to keep the two models independent while ensuring they start from the same point in their learning journey.

Key Takeaways:

Use state_dict() to save and load weights.

This method maintains separation between your models while ensuring identical initializations.

With this technique, you can confidently proceed with your training, knowing that both models have been initialized equivalently without direct weight sharing. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]