Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть exercise - 4.1 🔥 | determinants 👌🏼|

  • Infinix Classes
  • 2025-10-22
  • 49
exercise - 4.1 🔥 | determinants 👌🏼|
If |■8(𝒙&𝟐@𝟏𝟖&𝒙)|= |■8(𝟔&𝟐@𝟏𝟖&𝟔)|then x is equal to (A) 6 (B) ± 6 (C)– 6 (D) 0maths by faiz sirinfinix classesclass 12 determinantsFind values of xif (i) |■8(𝟐&𝟒@𝟓&𝟏)|= |■8(𝟐𝒙&𝟒@𝟔&𝒙)| (ii) |■8(𝟐&𝟑@𝟒&𝟓)|= |■8(𝒙&𝟑@𝟐𝒙&𝟓)|If A = [■8(𝟏&𝟏&−𝟐@𝟐&𝟏&−𝟑@𝟓&𝟒&−𝟗)]Evaluate the determinants: |■8(𝟑&−𝟏&−𝟐@𝟎&𝟎&−𝟏@𝟑&−𝟓&𝟎)||■8(𝟐&−𝟏&−𝟐@𝟎&𝟐&−𝟏@𝟑&−𝟓&𝟎)||■8(𝟎&𝟏&𝟐@−𝟏&𝟎&−𝟑@−𝟐&𝟑&𝟎)||■8(𝟑&−𝟒&𝟓@𝟏&𝟏&−𝟐@𝟐&𝟑&𝟏)|If A = [■8(𝟏&𝟎&𝟏@𝟎&𝟏&𝟐@𝟎&𝟎&𝟒)]then show that |3 A| = 27 |A|If A = [■8(𝟏&𝟐@𝟒&𝟐)]
  • ok logo

Скачать exercise - 4.1 🔥 | determinants 👌🏼| бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно exercise - 4.1 🔥 | determinants 👌🏼| или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку exercise - 4.1 🔥 | determinants 👌🏼| бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео exercise - 4.1 🔥 | determinants 👌🏼|

exercise - 4.1 🔥 | determinants 👌🏼| #determinants of #matrices of order n x n | NCERT #class12mathsinhindi




introduction,
determinants,
class 12 chapter 4,
class 12 chapter 4 solution,
class 12 chapter 4 maths,
class 12 chapter 4 maths solution,
class 12 maths ncert,
matrices and determinants,
class 12 matrices and determinants,
determinants of order n X n,
exercise 4.1 solution maths class 12,
exercise 4.2 solution maths class 12,
exercise 4.3 solution maths class 12,
exercise 4.4 solution maths class 12,
exercise 4.5 solution maths class 12,
miscellaneous examples and exercise on chapter 4 maths class 12,
ncert maths solution,
maths by faiz sir,
infinix classes,
class 12 maths,
maths by faiz sir infinix classes,
chapter 4,
maths classroom videos,
maths smart classrooms,
maths smartway,
maths easy,
easy maths,
adjoint of a matrix,
minors and cofactors of matrices,
minors and cofactors,
area of triangle using matrices,
inverse of a matrix,
application of determinants and matrices,
class 12 cbse board,
class 12 bihar board,
class 12 up board,
class 12 state board,
maths classes in gopalganj,










#determinantsclass12 #determinantsandmatrices #determinantsclass12th #determinantofmatrix #determinant #matrices_and_determinants #matricesanddeterminant #matricesanddeterminants #matrixanddeterminants #class12thmaths #class12 #class12thncertmathchapter1 #maths #mathsclass #mathsviraltricks #mathsvideocourse #infinixclasses #mathsbyfaizsir #faizsir #casestudy #adjointofmatrix #adjointofamatrix #inverseofamatrix #minors #cofactors #areaoftriangles #viralvideos #viralpost #viral #youtube #youtubemaths #youtubetrending








3. If A = [■8(𝟏&𝟐@𝟒&𝟐)], then show that |2A| = 4 |A|.




4. If A = [■8(𝟏&𝟎&𝟏@𝟎&𝟏&𝟐@𝟎&𝟎&𝟒)], then show that |3 A| = 27 |A|.




5. Evaluate the determinants:
(i) |■8(𝟑&−𝟏&−𝟐@𝟎&𝟎&−𝟏@𝟑&−𝟓&𝟎)| (ii) |■8(𝟑&−𝟒&𝟓@𝟏&𝟏&−𝟐@𝟐&𝟑&𝟏)|




(iii) |■8(𝟎&𝟏&𝟐@−𝟏&𝟎&−𝟑@−𝟐&𝟑&𝟎)| (iv) |■8(𝟐&−𝟏&−𝟐@𝟎&𝟐&−𝟏@𝟑&−𝟓&𝟎)|




6. If A = [■8(𝟏&𝟏&−𝟐@𝟐&𝟏&−𝟑@𝟓&𝟒&−𝟗)], find |A|.



7. Find values of x, if
(i) |■8(𝟐&𝟒@𝟓&𝟏)|= |■8(𝟐𝒙&𝟒@𝟔&𝒙)| (ii) |■8(𝟐&𝟑@𝟒&𝟓)|= |■8(𝒙&𝟑@𝟐𝒙&𝟓)|




8. If |■8(𝒙&𝟐@𝟏𝟖&𝒙)|= |■8(𝟔&𝟐@𝟏𝟖&𝟔)|, then x is equal to
(A) 6 (B) ± 6 (C)– 6 (D) 0






DETERMINANTS:

In class 12 mathematics, determinants are a fundamental concept associated with square matrices. They represent a scalar value that can be calculated from the elements of a square matrix. Determinants are useful for solving systems of linear equations and have applications in various fields like physics and engineering.

Here's a more detailed explanation:

What is a determinant?
A determinant is a scalar value derived from the elements of a square matrix.
It's denoted by "det(A)" or "|A|", where A is the matrix.

For a 2x2 matrix [[a, b], [c, d]], the determinant is calculated as ad - bc.

For a 3x3 matrix, the determinant is calculated using a specific formula involving the elements of the matrix.

Only square matrices (matrices with the same number of rows and columns) have determinants.

Key Concepts related to Determinants in Class 12:

Minors:
The minor of an element in a determinant is the determinant formed by deleting the row and column containing that element.

Cofactors:
The cofactor of an element is its minor multiplied by a sign (+ or -) determined by its position in the matrix.

Properties of Determinants:
There are several properties of determinants that can be used to simplify calculations, such as the property of interchanging rows or columns, multiplying a row or column by a constant, and adding a multiple of one row to another.

Applications:
Determinants are used to:

Find the area of a triangle.
Solve systems of linear equations (e.g., using Cramer's rule).
Determine if a matrix is invertible (non-singular).
Find the inverse of a matrix.
Calculate the adjoint of a matrix.
In essence, determinants are a powerful tool in linear algebra that provide valuable information about square matrices and their associated systems of equations.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]