Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Mastering CASE WHEN Logic in Spark Scala DataFrames

  • vlogize
  • 2025-04-11
  • 1
Mastering CASE WHEN Logic in Spark Scala DataFrames
Spark Scala Dataframe case when like functiondataframescalaapache spark
  • ok logo

Скачать Mastering CASE WHEN Logic in Spark Scala DataFrames бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Mastering CASE WHEN Logic in Spark Scala DataFrames или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Mastering CASE WHEN Logic in Spark Scala DataFrames бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Mastering CASE WHEN Logic in Spark Scala DataFrames

Learn how to effectively use `CASE WHEN` statements with multiple `LIKE` and `NOT LIKE` conditions in Spark Scala DataFrames for improved data manipulation and analysis.
---
This video is based on the question https://stackoverflow.com/q/75464385/ asked by the user 'Appden65' ( https://stackoverflow.com/u/10897931/ ) and on the answer https://stackoverflow.com/a/75465205/ provided by the user 'Meena Arumugam' ( https://stackoverflow.com/u/21038418/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Spark Scala Dataframe case when like function

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Problem: Using CASE WHEN in Spark Scala

If you're working with large datasets in Apache Spark using the Scala programming language, you might often find yourself needing to perform conditional transformations on your DataFrames. One often-used mechanism for this is the CASE WHEN logic.

In SQL, CASE WHEN statements allow you to evaluate conditions and return specific values based on those evaluations. However, when you're using DataFrame APIs in Spark Scala, constructing these statements can seem a bit tricky, especially with multiple LIKE and NOT LIKE conditions.

The SQL Logic We Want to Translate

Here's the SQL logic we want to convert into Spark Scala syntax:

[[See Video to Reveal this Text or Code Snippet]]

This logic effectively creates a new column based on conditions set on two other columns (col_1 and col_2).

Solution: Performing CASE WHEN with DataFrames in Spark Scala

To achieve the desired transformation in Spark, we'll utilize the expr function from the DataFrame API. This allows us to pass a SQL-like string to execute directly within our DataFrame.

Step-by-Step Implementation

Import Required Functions
First, make sure to import the necessary functions from the Spark SQL library:

[[See Video to Reveal this Text or Code Snippet]]

Create the DataFrame
Next, let's create a sample DataFrame that mirrors the data structure implied in the original SQL logic:

[[See Video to Reveal this Text or Code Snippet]]

Construct the CASE WHEN Statement
Within the select method, we'll use expr to implement our logic:

[[See Video to Reveal this Text or Code Snippet]]

View the Result
Running the above code will produce the following output, showcasing how your new conditions have been applied to the DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using the expr function in Spark Scala allows for easy implementation of SQL-like conditional logic directly within your DataFrames. By translating your business logic into this format, you can effectively manipulate your data for reporting or analysis purposes.

With this guide, you now have the tools to handle complex conditions involving LIKE and NOT LIKE operations in your Spark DataFrames effortlessly. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]