Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How do self organizing maps work self organizing maps part 1

  • CodeWrite
  • 2025-06-01
  • 2
How do self organizing maps work self organizing maps part 1
  • ok logo

Скачать How do self organizing maps work self organizing maps part 1 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How do self organizing maps work self organizing maps part 1 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How do self organizing maps work self organizing maps part 1 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How do self organizing maps work self organizing maps part 1

Download 1M+ code from https://codegive.com/5f4664f
okay, let's dive deep into self-organizing maps (soms). this is going to be a comprehensive tutorial, starting from the fundamental concepts and gradually progressing to implementation with python code. this is part 1, focusing on the core mechanics and a basic implementation. part 2 will cover more advanced topics, practical considerations, and variations.

*what is a self-organizing map (som)?*

a self-organizing map (som), also known as a kohonen map, is a type of unsupervised learning algorithm primarily used for *dimensionality reduction* and *visualization**. it belongs to the family of artificial neural networks. however, unlike many other neural networks, soms use a **competitive learning* approach instead of error correction like backpropagation.

think of it as a way to project high-dimensional data onto a lower-dimensional (usually 2d) grid while preserving the topological relationships within the data. this means data points that are close to each other in the original high-dimensional space will tend to be mapped to neighboring neurons on the som grid.

*key concepts and components*

1. *input space (data space):* this is where your original data resides. each data point (or sample) is a vector with 'n' features (dimensions). for instance, if you're dealing with customer data, your features could be age, income, spending habits, etc.

2. *som grid (map):* the som is a typically a 2d grid of neurons. each neuron (or node) on the grid has a weight vector associated with it. the weight vector has the same dimensionality as the input data vectors.
the topology of the grid is crucial. common choices include rectangular and hexagonal grids.

3. *weight vectors:* each neuron in the som grid has a weight vector (also known as a model vector). the weight vector has the same dimensionality as the input data. the weight vectors represent the "position" of the neuron in the input data space. during training, these weight vectors wil ...

#SelfOrganizingMaps #MachineLearning #DataVisualization

self organizing maps
SOM
neural networks
unsupervised learning
clustering
dimensionality reduction
data visualization
training process
distance metrics
feature mapping
Kohonen network
topology preservation
application in AI
pattern recognition
machine learning techniques

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]