Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Filter Columns in Pandas Using Row Values

  • vlogize
  • 2025-10-08
  • 0
How to Filter Columns in Pandas Using Row Values
How to filter out columns in pd using the value of rows selected by a specific index row?pythonpandas
  • ok logo

Скачать How to Filter Columns in Pandas Using Row Values бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Filter Columns in Pandas Using Row Values или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Filter Columns in Pandas Using Row Values бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Filter Columns in Pandas Using Row Values

Learn how to effectively filter out columns in a Pandas DataFrame based on values from a selected row index to keep pertinent data.
---
This video is based on the question https://stackoverflow.com/q/64407578/ asked by the user 'JPWilson' ( https://stackoverflow.com/u/8684461/ ) and on the answer https://stackoverflow.com/a/64407948/ provided by the user 'David Erickson' ( https://stackoverflow.com/u/6366770/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to filter out columns in pd using the value of rows selected by a specific index row?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Filtering Columns in Pandas: A Practical Guide

When working with data in Pandas, one common challenge is filtering columns based on specific criteria from rows. Imagine you have a DataFrame with multiple columns and you want to keep only those that meet certain conditions. In this post, we will explore how to filter out columns by the value of selected row indices, specifically focusing on maintaining columns based on a “5 Day Change” percentage threshold.

Understanding the Problem

For our example, let's consider a DataFrame with dates as rows and various values in columns. You want to filter this DataFrame to retain only the columns where the “5 Day Change” is greater than or equal to 10%. This is crucial for analyzing trends or determining performance metrics over a specified period.

The initial attempt might look something like this:

[[See Video to Reveal this Text or Code Snippet]]

However, this simple approach doesn’t work because df.loc is primarily for selecting rows based on labels, not for filtering columns. Let’s dive into a solution that effectively gets the job done.

Step-by-Step Solution

Step 1: Transpose the DataFrame

The first step in filtering columns based on row values is to transpose the DataFrame. Transposing switches rows to columns, which makes it easier to filter by what was previously a row. Here’s how you can do it:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Apply Filtering Criteria

Next, you can apply your filtering criteria based on the transposed DataFrame. In our case, we want to retain columns where the “5 Day Change” is greater than or equal to 0.1. Here’s the code snippet for this operation:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Transpose Back

After filtering, it’s essential to transpose the DataFrame back to its original format to revert to the initial view:

[[See Video to Reveal this Text or Code Snippet]]

Putting It All Together

Combining all the steps discussed above, your final code will look like this:

[[See Video to Reveal this Text or Code Snippet]]

Final Output

This will yield a DataFrame retaining only the columns where the "5 Day Change" exceeds 10%:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Filtering columns based on specific row values in Pandas can be done easily by transposing the DataFrame, applying the filtering logic, and then transposing it back. This technique aids in better managing and analyzing data, ensuring you only work with relevant information. Now you're equipped to handle similar tasks in your data analysis workflow!

Happy Data Filtering!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]