Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Boosting Performance in Gensim with Apache Spark: Efficiently Initializing Objects on Worker Nodes

  • vlogize
  • 2025-04-02
  • 1
Boosting Performance in Gensim with Apache Spark: Efficiently Initializing Objects on Worker Nodes
Initializing gensim objects on all spark worker nodespythonapache sparkpysparkparallel processinguser defined functions
  • ok logo

Скачать Boosting Performance in Gensim with Apache Spark: Efficiently Initializing Objects on Worker Nodes бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Boosting Performance in Gensim with Apache Spark: Efficiently Initializing Objects on Worker Nodes или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Boosting Performance in Gensim with Apache Spark: Efficiently Initializing Objects on Worker Nodes бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Boosting Performance in Gensim with Apache Spark: Efficiently Initializing Objects on Worker Nodes

Learn how to speed up your PySpark applications by initializing Gensim objects efficiently across all Spark worker nodes, minimizing run time on large datasets.
---
This video is based on the question https://stackoverflow.com/q/69591543/ asked by the user 'Aparajith Chandran' ( https://stackoverflow.com/u/1357806/ ) and on the answer https://stackoverflow.com/a/69671379/ provided by the user 'Aparajith Chandran' ( https://stackoverflow.com/u/1357806/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Initializing gensim objects on all spark worker nodes

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Boosting Performance in Gensim with Apache Spark

Are you struggling with slow performance when processing large datasets using Gensim and Apache Spark? You’re not alone. Many developers encounter significant delays when applying user-defined functions (UDFs) that rely on heavy libraries like Gensim. In this post, we'll explore how to efficiently initialize Gensim objects on Apache Spark worker nodes to enhance your application's performance.

The Problem: Slow Data Processing

When applying a UDF to a PySpark DataFrame, a common bottleneck occurs if the dictionary, corpus, and similarity index are generated for every single row. This leads to excessive computational overhead, particularly when working with vast datasets. In one scenario, the author of this problem was facing a staggering wait of nearly 6 minutes for each row due to repeated object initialization.

Here’s a simplified look at the core function the author was working with:

[[See Video to Reveal this Text or Code Snippet]]

While functional, this approach wasn't the most efficient, prompting the search for better alternatives.

The Solution: Initialize Gensim Objects on Worker Nodes

Step 1: Optimize Object Initialization

The key to alleviating the slowdown is ensuring that Gensim objects are initialized properly on each Spark worker node, rather than repeatedly in the UDF for every row. Below is the refined version of the test function that adapts for Spark's environment:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Explanation of the Function Logic

File Check: The function first checks if the path to the similarity index exists on the worker node. If it does, it loads the existing Gensim objects to save time on subsequent calls.

Initialization Logic: If the index does not exist, it initializes all necessary Gensim objects for the first time, and then saves them for future use.

Query Execution: The core logic for processing the query using the loaded dictionary and similarity object is maintained but now happens only once per worker, reducing redundancy drastically.

Conclusion

By initializing Gensim objects directly on each Spark worker node and using conditional logic to manage object lifecycles, you can significantly improve the response times of your UDFs in PySpark. This strategy not only maintains the functional integrity of your application but also enhances scalability across large datasets.

In conclusion, addressing initialization within the worker nodes can be a game-changer in PySpark performance and is crucial for developers who are dealing with extensive data processing tasks. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • Как стать разработчиком Python в 2024 году | Дорожная карта Python
    Как стать разработчиком Python в 2024 году | Дорожная карта Python
    1 год назад
  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]