Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Loop Through Multiple DataFrames to Modify Them in Python Pandas

  • vlogize
  • 2025-05-28
  • 0
How to Loop Through Multiple DataFrames to Modify Them in Python Pandas
Looping to modify multiple Dataframes in a listpythonpandasdataframe
  • ok logo

Скачать How to Loop Through Multiple DataFrames to Modify Them in Python Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Loop Through Multiple DataFrames to Modify Them in Python Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Loop Through Multiple DataFrames to Modify Them in Python Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Loop Through Multiple DataFrames to Modify Them in Python Pandas

Learn how to effectively loop through a list of DataFrames in Python to create dummy variables and concatenate them seamlessly for better data analysis.
---
This video is based on the question https://stackoverflow.com/q/67295227/ asked by the user 'Arihant Jain' ( https://stackoverflow.com/u/15782149/ ) and on the answer https://stackoverflow.com/a/67295340/ provided by the user 'Mustafa Aydın' ( https://stackoverflow.com/u/9332187/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Looping to modify multiple Dataframes in a list

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Looping to Modify Multiple DataFrames in a List

When working with data in Python, especially with DataFrames, you may find yourself needing to modify multiple DataFrames at once. A common scenario is creating dummy variables from a categorical column. In this post, we will address how to loop through multiple DataFrames and successfully modify them, ensuring that the changes reflect in your DataFrames.

The Problem

Imagine that you have five separate DataFrames, each containing a column called Fuel_Type. Your goal is to transform this categorical variable into multiple dummy variables for analysis purposes. Here is the snippet of code you may have tried:

[[See Video to Reveal this Text or Code Snippet]]

While this code doesn’t produce any errors, the original DataFrames remain unchanged after the loop. You are left without the expected dummy variables in your DataFrames, which can be frustrating when you’re trying to prepare your data for analysis.

The Solution

To effectively modify the DataFrames, we need to ensure that the updates apply to the original DataFrames. This can be accomplished by wrapping the operations in a function and then reassigning the results back to the original DataFrames. Here’s how to do it:

Step 1: Create a Function

We start by creating a function that takes a DataFrame and returns a modified version of that DataFrame with the dummy variables added. Here’s an example:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Apply the Function to a List of DataFrames

Next, we will create a list of the DataFrames and apply our function to each one. Here’s how you can do that:

[[See Video to Reveal this Text or Code Snippet]]

By wrapping the operations in the add_dummies function, we ensure that we do not lose the reference to the original DataFrames when we modify them.

Why did the Original Code Fail?

The original attempt to modify the DataFrames failed because of the way Python handles variable assignments. When you reassign k inside the loop, you are effectively pointing k to a new object. Therefore, the changes made to k do not reflect back on the list of DataFrames [df1, df2, df3, df4, df5]. Using a function not only encapsulates the process but also allows us to return the modified DataFrame back to the original variables.

Conclusion

By following these steps, you can easily modify multiple DataFrames in Python using Pandas to include dummy variable columns from a specified categorical column. This approach not only simplifies your code but also ensures that your data preparation is efficient and effective.

Now, when you run your code, you can expect all five DataFrames to be updated with the new dummy variable columns created from the Fuel_Type column. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]