Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Towards a reliable prediction of conversion from Mild Cognitive Impairment to Alzheimer’s Disease

  • KDD2017 video
  • 2018-01-15
  • 110
Towards a reliable prediction of conversion from Mild Cognitive Impairment to Alzheimer’s Disease
KDD2017knowledge discovery and data miningACM SIGKDDconferencevideolectures
  • ok logo

Скачать Towards a reliable prediction of conversion from Mild Cognitive Impairment to Alzheimer’s Disease бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Towards a reliable prediction of conversion from Mild Cognitive Impairment to Alzheimer’s Disease или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Towards a reliable prediction of conversion from Mild Cognitive Impairment to Alzheimer’s Disease бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Towards a reliable prediction of conversion from Mild Cognitive Impairment to Alzheimer’s Disease

Towards a reliable prediction of conversion from Mild Cognitive Impairment to Alzheimer’s Disease: stepwise learning using time windows

Author:
Telma Pereira, Instituto Superior Técnico, Universidade de Lisboa

Abstract:
Predicting progression from a stage of Mild Cognitive Impairment to Alzheimer’s disease is a major pursuit in current dementia research. As a result, many prognostic models have emerged with the goal of supporting clinical decisions. Despite the efforts, the clinical application of such models has been hampered by: 1) the lack of a reliable assessment of the uncertainty of each prediction, and 2) not knowing the time to conversion. It is paramount for clinicians to know how much they can rely on the prediction made for a given patient (conversion or no conversion), and the time windows in case of conversion, in order to timely adjust the treatments. We propose a supervised learning approach using Conformal Prediction and a stepwise learning approach, where the learning model first predicts whether a patient converts to dementia, or remains stable, and then predicts the more likely progression window (short-term or long-term conversion). We used data from ADNI to test the approach and predict conversion within time windows of up to 2 years (short-term converter) and 2 to 4 years (long-term converter). The exploratory results are promising but compromised by the small number of examples for the long-term converting patients, available for training.

More on http://www.kdd.org/kdd2017/

KDD2017 Conference is published on http://videolectures.net/

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]