Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Transformer Architecture Explained: From Attention to ChatGPT, BERT & LLMs (Deep Dive)

  • AI Atlas
  • 2025-12-31
  • 27
Transformer Architecture Explained: From Attention to ChatGPT, BERT & LLMs (Deep Dive)
  • ok logo

Скачать Transformer Architecture Explained: From Attention to ChatGPT, BERT & LLMs (Deep Dive) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Transformer Architecture Explained: From Attention to ChatGPT, BERT & LLMs (Deep Dive) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Transformer Architecture Explained: From Attention to ChatGPT, BERT & LLMs (Deep Dive) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Transformer Architecture Explained: From Attention to ChatGPT, BERT & LLMs (Deep Dive)

Welcome to 'The Silent Architect: Transformer Architecture Explained'! This deep dive uncovers the most revolutionary technology in modern Artificial Intelligence, the Transformer architecture. It's not just the backbone of every modern Large Language Model (LLM), from ChatGPT to Claude, but it's fundamentally changing how humanity interacts with information, generates creativity, and processes data.

We begin by understanding the "seismic shift" from traditional Recurrent Neural Networks (RNNs), highlighting their "sequential, forgetful nature" and "memory bottleneck" that limited scalability. Discover the breakthrough 2017 paper "Attention Is All You Need" and how the Transformer's ingenious attention mechanism ruthlessly abandoned recurrence, enabling massive parallelization—the critical key to training on gargantuan datasets.

Explore modular and elegant design built from Transformer Blocks. Learn about the crucial role of Token and Position Embedding in the Input Layer, and the Linear + Softmax Output Layer for predicting the next word.

Delve into the core components of the Transformer Block:
Skip Connections (Add) and Layer Normalization (Norm): Essential "highways" for stability, preventing signal degradation, and ensuring efficient gradient flow in deep networks.
Multi-Head Attention:The "powerful engine" that learns to dynamically weigh the relative importance of every word simultaneously. Understand how independent "attention heads" specialize in different relationships for comprehensive contextual understanding.
Relevance Over Sequence: See how attention prioritizes relevant context, regardless of distance, for long-range coherence
Query, Key, and Value (Q, K, V):The "forensic tools" used by attention as an efficient information retrieval system to calculate relevance scores and generate a rich Context Vector.

Confront the challenge of Permutation Invariance and how Positional Encoding (Positional Embedding) solves this by explicitly encoding word order, ensuring grammatical and syntactic structure without sacrificing parallel processing.

For text generation models (Decoder Transformers like GPT), learn about Causal Masking, a critical technique that forbids "peeking into the future" during training, forcing the model to genuinely predict and generate text sequentially.

Discover the interpretability of Transformers by visualizing attention scores, allowing us to see what the model is "thinking" and where it sources its information for predictions (e.g., predicting "clue" based on "detective" and "case file").

Explore the three primary architectural factions:
Encoder Only ("The Interrogators"): Like BERT, using bidirectional attention for deep comprehension tasks (classification, NER, QA).
Decoder Only ("The Oracles"): Like GPT models, using unidirectional attention with causal masking for generation (chatbots, creative writing).
Encoder-Decoder ("The Translators"): Like T5, for sequence-to-sequence tasks (machine translation, abstractive summarization), usingCross Attention as "The Bridge" between encoder and decoder.

Witness "The Empire of Scale": the dramatic rise of AI driven by exponential increases in model size (parameters) and training data volume. Trace the evolution from GPT-1 to GPT-3 (175 billion parameters), highlighting "emergent abilities" like few-shot learning and sophisticated reasoning, and the shift towards multimodal systems like GPT-4.

Finally, delve into Reinforcement Learning from Human Feedback (RLHF), the "final, crucial step" that aligns raw LLMs with human intent and values. Understand the RLHF pipeline: Supervised Fine-Tuning, Reward Modeling, and Reinforcement Learning (PPO), teaching the silent architect to communicate with purpose, safety, and helpfulness.

This journey into the heart of the Transformer completes the entire anatomy of modern conversational AI, revealing its immense power and its profound impact on our world.

What you'll learn:
The fundamental differences between RNNs and Transformers.
The breakthrough concept of the Attention mechanism.
Core components: Transformer Block, Multi-Head Attention, Positional Encoding.
How Query, Key, and Value vectors work in attention.
The importance of Skip Connections and Layer Normalization.
Causal Masking for text generation in decoders.
Interpretability of Transformers through attention visualization.
Architectural variations: Encoder-Only (BERT), Decoder-Only (GPT), Encoder-Decoder (T5).
The impact of scale on LLM capabilities and emergent abilities.
The role of Reinforcement Learning from Human Feedback (RLHF) in AI alignment.
The future of conversational AI and large language models.



#Transformer
#DeepLearning
#NLP
#ChatGPT
#BERT
#GPT
#AttentionMechanism
#AIExplained
#MachineLearning
#LLM



Transformer architecture,Deep Learning,NLP,ChatGPT,BERT,GPT,Attention mechanism,AI explained,Large language models,Reinforcement learning

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]