Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Effective Regex Matching and Stripping in Pandas

  • vlogize
  • 2025-04-07
  • 0
Effective Regex Matching and Stripping in Pandas
Effective way to regexp match pandas and strip inside df?pythonregexpandascisco
  • ok logo

Скачать Effective Regex Matching and Stripping in Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Effective Regex Matching and Stripping in Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Effective Regex Matching and Stripping in Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Effective Regex Matching and Stripping in Pandas

Learn how to efficiently use regex to match and clean data in Pandas, transforming your data for better analysis and insights.
---
This video is based on the question https://stackoverflow.com/q/72901860/ asked by the user 'OrkyCodes' ( https://stackoverflow.com/u/19504346/ ) and on the answer https://stackoverflow.com/a/72902161/ provided by the user 'Wiktor Stribiżew' ( https://stackoverflow.com/u/3832970/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Effective way to regexp match pandas and strip inside df?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Effective Regex Matching and Stripping in Pandas

Data management can often become daunting, especially when you have large datasets and need to extract specific information efficiently. A common challenge involves utilizing regular expressions (regex) to match and manipulate data. In this guide, we’ll explore how you can effectively perform regex matching in a Pandas DataFrame while simultaneously cleaning up the data inside it.

The Challenge

Imagine you have a large CSV file containing telecom data, specifically focusing on a column labeled “Device Pool”. Each entry in this column includes a string that consists of multiple parts, one of which is a device identifier preceded by a "D" followed by a set of digits. You want to achieve two main goals:

Extract the numeric identifier from the “Device Pool” column while keeping the associated data from the “Directory Number 1” column intact.

Strip off the "D" character from the extracted data, as it’s only useful for the initial lookup.

Example Data

For instance, your data might look like this:

[[See Video to Reveal this Text or Code Snippet]]

Desired Result

You want to transform this into:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

Pandas provides powerful tools to manipulate strings in DataFrames with regex capabilities. Let's delve into one of the most effective methods using both str.replace() and str.extract().

Using str.replace()

This method is useful when you want to replace part of the string that matches a regex pattern. Here’s how you can implement it:

[[See Video to Reveal this Text or Code Snippet]]

Using str.extract()

Another efficient approach is to use str.extract(), which allows you to capture groups defined in your regex:

[[See Video to Reveal this Text or Code Snippet]]

Example Code

Below is an example that implements this solution in a Python script using Pandas:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Regex Pattern

.* - Matches any character (except line breaks) zero or more times.

-D - Matches the specific string "-D".

(\d+ ) - Captures a sequence of digits (the desired identifier).

.* - Matches the rest of the line.

Output

When you run the code, you will get the output similar to:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By using the methods shown above, you can efficiently match and manipulate data within your Pandas DataFrame using regex. This approach not only simplifies your data cleaning process but also retains valuable contextual information from other columns. Whether you’re mapping coordinate data or performing further analyses, having your data clean and organized will allow for more meaningful insights. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]