Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Addressing the Issue of BigQuery Accessing All Data Despite Partitioning

  • vlogize
  • 2025-04-06
  • 0
Addressing the Issue of BigQuery Accessing All Data Despite Partitioning
GCP BigQuery wont access a single partitiongoogle cloud platformgoogle bigquerypartitioningdatabase partitioning
  • ok logo

Скачать Addressing the Issue of BigQuery Accessing All Data Despite Partitioning бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Addressing the Issue of BigQuery Accessing All Data Despite Partitioning или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Addressing the Issue of BigQuery Accessing All Data Despite Partitioning бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Addressing the Issue of BigQuery Accessing All Data Despite Partitioning

Discover why your GCP BigQuery query is not accessing the proper partitions and learn effective techniques to optimize it for improved performance and cost-efficiency.
---
This video is based on the question https://stackoverflow.com/q/77196289/ asked by the user 'chocho.boss' ( https://stackoverflow.com/u/14646784/ ) and on the answer https://stackoverflow.com/a/77196382/ provided by the user 'Ugur Yigit' ( https://stackoverflow.com/u/17134783/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: GCP BigQuery wont access a single partition

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Problem: Why Is BigQuery Accessing All Data?

Are you facing an issue where your Google Cloud Platform (GCP) BigQuery query is accessing all the data in a table even though you've set up partitioning? This can be frustrating, especially when you're expecting to optimize performance and reduce costs. Let's delve into this problem and identify the solution.

The Scenario

In your case, you've partitioned your table by DAY on the datetime field, and you're running a query like this:

[[See Video to Reveal this Text or Code Snippet]]

However, it’s still scanning the entire 3GB dataset instead of just the relevant partition. The confusion lies in the TIMESTAMP data type used in the datetime field. Even trying to adjust your query with functions like date(datetime) = "2023-09-11" or DATE_TRUNC() didn’t lead to the desired outcome.

The Solution: Understanding Partitioning and Clustering in BigQuery

When it comes to managing data effectively in BigQuery, partitioning and clustering are key concepts. Here's how each method works and why you might want to consider clustering as a solution instead of relying solely on partitioning.

1. The Limitations of Partitioning

Partitioning is beneficial when dealing with large datasets, but it has limitations depending on the data distribution and size:

Small Data Volumes: For tables with less than 10 GB of data, partitioning does not significantly improve performance. In fact, it may end up being inefficient as BigQuery still needs to read the metadata for all partitions.

Full Table Scan in Some Queries: If your query does not filter the data correctly or if it doesn't hit the partitioning key appropriately, it may result in a full scan.

2. Why Opt for Clustering instead of Partitioning?

In scenarios where your data does not lend itself well to partitioning, clustering may be the better option. Clustering organizes data based on content, allowing for improved performance on more selective queries.

When to Consider Clustering:

Limited Data: If your table has a small amount of data (less than approximately 10 GB), clustering can enhance query performance without the overhead of managing multiple partitions.

Frequent Querying on Key Columns: If you often query on specific columns, clustering can speed up these queries by reducing the amount of data scanned.

3. Implementing Clustering in BigQuery

Here’s a brief guide on how to implement clustering in BigQuery:

Create or Modify a Table: You can create a new table with clustering defined, or modify an existing table to include clustering.

Specify Clustering Columns: Choose the columns that will serve as the basis for clustering. These should be columns that you frequently filter by in your queries.

Performance: Run your queries again to check if performance improves, as clustering can significantly reduce the cost and time of data retrieval.

Conclusion

In summation, if you're having trouble with your BigQuery queries scanning unnecessary data, it's vital to assess how you've set up your partitioning and consider clustering as an alternative. This strategy is especially relevant for smaller tables where partitioning provides minimal benefits.

By following these guidelines and implementing clustering, you should be able to optimize your queries effectively, ensuring that they only access the relevant data and minimizing unnecessary costs.

If you have further questions or need assistance with your BigQuery setup, feel free to reach out in the comments!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]