Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть PYTHON THREADS AND PROCESSES | PYTHON FULL COURSE

  • Tech With Machines
  • 2024-05-02
  • 42
PYTHON THREADS AND PROCESSES | PYTHON FULL COURSE
  • ok logo

Скачать PYTHON THREADS AND PROCESSES | PYTHON FULL COURSE бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно PYTHON THREADS AND PROCESSES | PYTHON FULL COURSE или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку PYTHON THREADS AND PROCESSES | PYTHON FULL COURSE бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео PYTHON THREADS AND PROCESSES | PYTHON FULL COURSE

Python provides two main ways to perform multitasking: threads and processes. Understanding their differences and appropriate use cases is key to writing efficient, concurrent applications.

Threads
Definition: Threads are lightweight, share the same memory space, and are used for tasks that require minimal CPU but perform I/O-bound operations.
Python's Global Interpreter Lock (GIL):
In CPython (Python’s default implementation), the GIL prevents multiple threads from executing Python bytecode simultaneously.
This makes threading less effective for CPU-bound tasks but suitable for I/O-bound tasks.
Example of Using Threads
python
Copy code
import threading
import time

def print_numbers():
for i in range(5):
print(f"Number: {i}")
time.sleep(1)

Creating threads
thread1 = threading.Thread(target=print_numbers)
thread2 = threading.Thread(target=print_numbers)

Starting threads
thread1.start()
thread2.start()

Wait for threads to finish
thread1.join()
thread2.join()

print("Threads completed!")
Processes
Definition: Processes run in separate memory spaces and are suitable for CPU-bound tasks since they are not affected by the GIL.
Multiprocessing: Python’s multiprocessing module creates separate processes to execute code concurrently.
Example of Using Processes
python
Copy code
from multiprocessing import Process
import os

def print_process_info():
print(f"Process ID: {os.getpid()}")

Creating processes
process1 = Process(target=print_process_info)
process2 = Process(target=print_process_info)

Starting processes
process1.start()
process2.start()

Wait for processes to finish
process1.join()
process2.join()

print("Processes completed!")
Key Differences Between Threads and Processes
Feature Threads Processes
Memory Shared memory space Separate memory space
Overhead Low overhead Higher overhead
Concurrency Type I/O-bound tasks CPU-bound tasks
GIL Impact Affected by the GIL Not affected by the GIL
Communication Easier (shared memory) Requires inter-process communication (IPC)
When to Use Threads vs. Processes
Use threads when:
Your application is I/O-bound (e.g., reading/writing files, making API calls, etc.).
Low memory consumption is required.
Use processes when:
Your application is CPU-bound (e.g., numerical computations, data processing).
You need true parallelism.
Combining Threads and Processes
For some workloads, combining threads and processes can be beneficial. For example, use threads for I/O operations within a multiprocessing pool.

Example: Multiprocessing with Threads
python
Copy code
from multiprocessing import Pool
import threading

def thread_task(task_id):
print(f"Thread {task_id} running")

def process_task():
threads = [threading.Thread(target=thread_task, args=(i,)) for i in range(3)]
for thread in threads:
thread.start()
for thread in threads:
thread.join()

if _name_ == "__main__":
with Pool(2) as pool: # 2 processes
pool.map(lambda _: process_task(), range(2))
Would you like help with a specific use case involving threading, multiprocessing, or both?

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]