Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть PYQ 2020 | CBSE Class 12 Physics | Section -D | 55/4/1 | Previous year Q&A | ICAN Physics Academy

  • ican physics vijay
  • 2025-09-26
  • 29
PYQ 2020 | CBSE Class 12 Physics | Section -D | 55/4/1 | Previous year Q&A | ICAN Physics Academy
12th physics12th physics answer keyICAN PHYSICSican physicsvijayakumar physics12TH Previous Year Questions55/4/1section - DpyqPYQCBSE PYQCBSE PYQ PHYSICScbse pyq physicscbse pyq 2020cbse pyqRadioactive decaylaw of radioactive decaydecay constanthalf lifemean lifenuclear physics class 12radioactivity class 12bohr atomic modelenergy levels in atomspectral series of hydrogenhydrogen spectrum class 12Lyman series
  • ok logo

Скачать PYQ 2020 | CBSE Class 12 Physics | Section -D | 55/4/1 | Previous year Q&A | ICAN Physics Academy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно PYQ 2020 | CBSE Class 12 Physics | Section -D | 55/4/1 | Previous year Q&A | ICAN Physics Academy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку PYQ 2020 | CBSE Class 12 Physics | Section -D | 55/4/1 | Previous year Q&A | ICAN Physics Academy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео PYQ 2020 | CBSE Class 12 Physics | Section -D | 55/4/1 | Previous year Q&A | ICAN Physics Academy

Radioactive Law of Decay

● Radioactive decay is a spontaneous process — no external force is needed.
● Unstable nuclei change by emitting α (alpha), β (beta) or γ (gamma) radiation.
● Let N = number of undecayed atoms at any time t.
● Let λ = decay constant (probability of decay per second).
● Rate of decay is directly proportional to the number of atoms present.
⇒ − dN/dt ∝ N
● Introducing the constant of proportionality λ:
⇒ − dN/dt = λN
● As time increases, N decreases continuously.
● Decay process is random, but follows a definite mathematical law.
● Each radioactive element has its own unique decay constant (λ).
● Decay continues until a stable nucleus is formed.

⏳ Half-Life

● Half-life is the time taken for half of the radioactive atoms in a sample to decay.
● If you start with a number of atoms N₀, after one half-life only N₀/2 atoms remain undecayed.
● After the second half-life → N₀/4 remain.
● After the third half-life → N₀/8 remain, and so on.
● Half-life is represented by the symbol T₁/₂.
● Each radioactive element has a constant and unique half-life (cannot be changed by heat, pressure, or chemical reactions).
● Half-life is independent of the amount of the substance → small or large sample decays in the same ratio.
● Radioactive decay is exponential and occurs at a rate proportional to the number of remaining atoms.
● Half-life helps us measure how fast or slow a substance decays.
● Substances with short half-life decay quickly → highly radioactive.
● Substances with long half-life decay slowly → less active but long-lasting.

🕒 Mean Life

● Mean life is the average lifetime of all radioactive atoms before they decay.
● It tells how long, on average, one atom of a radioactive substance exists before decaying.
● Mean life is represented by the symbol τ (tau).
● Every atom does not decay at the same time — some decay early, some late —
→ Mean life gives the average of all these decay times.
● Mean life is related to the decay constant (λ).
● A larger decay constant (λ) means the substance decays quickly → short mean life.
● A smaller decay constant means slower decay → long mean life.
● Mean life is always greater than the half-life of the same substance.
● Mean life is a fixed value for each radioactive element.
● It does not depend on external conditions like temperature, pressure, or state.

🌟 Bohr’s Atomic Model – Explanation

● Proposed by Niels Bohr in 1913 to explain the structure of the hydrogen atom.
● Electrons revolve around the nucleus in fixed circular orbits called energy levels or shells.
● These permitted orbits are stable and electrons do not radiate energy while revolving in them.
● Each orbit has a fixed energy and is denoted by
K, L, M, N… or n = 1, 2, 3, 4…
● Electrons can jump from a lower energy level to a higher level by absorbing energy.
● Electrons can fall from a higher energy level to a lower level by emitting energy in the form of light (photons).
● The energy of the emitted or absorbed photon is given by:
E = E₂ – E₁
● Angular momentum of the electron is quantized, allowed only in discrete values:
mvr = n (h/2π)
● Only certain orbits are allowed where the electron’s angular momentum fits as whole-number multiples of h/2π.
● The model explains the line spectrum of hydrogen and the formation of spectral lines.
● Bohr’s model corrected the failures of Rutherford’s model by introducing quantized orbits.

🌈 Spectral Series of Hydrogen

● When an electron in a hydrogen atom jumps between energy levels, it emits or absorbs photons of specific wavelengths.
● These wavelengths form distinct line spectra called spectral series.
● Each series corresponds to electrons falling to a specific lower energy level (n₁).
● The wavelength of each line is given by the Rydberg formula:
1/λ = R (1/n₁² − 1/n₂²)
where R = Rydberg constant.
● Different spectral series appear in different regions of the electromagnetic spectrum.

🔢 Types of Hydrogen Spectral Series
⭐ 1. Lyman Series

● Electron transition to n₁ = 1

● Lies in Ultraviolet (UV) region

● Example: n₂ = 2, 3, 4… → 1

⭐ 2. Balmer Series

● Electron transition to n₁ = 2

● Lies in Visible light region

● Only series visible to the human eye

⭐ 3. Paschen Series

● Electron transition to n₁ = 3

● Lies in Infrared (IR) region

⭐ 4. Brackett Series

● Transition to n₁ = 4

● Lies in Infrared (IR) region

⭐ 5. Pfund Series

● Transition to n₁ = 5

● Lies in Far Infrared region

⭐ 6. Humphreys Series

● Transition to n₁ = 6

● Lies in Infrared region

#RadioactiveDecay
#LawOfRadioactiveDecay
#HalfLife
#MeanLife
#DecayConstant
#AlphaDecay
#BetaDecay
#GammaRadiation
#NuclearPhysics
#RadioactivityClass12
#EnergyLevels
#HydrogenSpectrum
#SpectralSeries
#LymanSeries
#BalmerSeries
#PaschenSeries
#BrackettSeries
#PfundSeries
#HumphreysSeries
#RydbergFormula
#AtomicPhysics
#12thPhysics
#Class12Physics
#NCERTPhysics
#BoardExamPhysics
#IcanPhysicsAcademy
#PhysicsMadeEasy
#LearnPhysics
#StudyPhysics
#ExamPreparation

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]