Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Use Fortran Functions with Numpy Arrays in Python: Ensuring Precision

  • vlogize
  • 2025-05-25
  • 3
How to Use Fortran Functions with Numpy Arrays in Python: Ensuring Precision
Fortran function that returns float to return arrayspythonarraysscipyfortranf2py
  • ok logo

Скачать How to Use Fortran Functions with Numpy Arrays in Python: Ensuring Precision бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Use Fortran Functions with Numpy Arrays in Python: Ensuring Precision или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Use Fortran Functions with Numpy Arrays in Python: Ensuring Precision бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Use Fortran Functions with Numpy Arrays in Python: Ensuring Precision

Discover how to seamlessly integrate Fortran functions with Numpy arrays in Python without losing precision in your results. Learn more here!
---
This video is based on the question https://stackoverflow.com/q/71727369/ asked by the user 'Tito Diego' ( https://stackoverflow.com/u/16531346/ ) and on the answer https://stackoverflow.com/a/71728417/ provided by the user 'Vladimir F Героям слава' ( https://stackoverflow.com/u/721644/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Fortran function that returns float to return arrays

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Use Fortran Functions with Numpy Arrays in Python: Ensuring Precision

For those working with scientific computing in Python, the combination of Fortran and Numpy can unlock powerful computational capabilities. However, if you are integrating Fortran functions into your Python projects and utilizing Numpy arrays, you might encounter some challenges – particularly regarding precision. In this post, we will address a common issue and demonstrate how to ensure you get the results you expect from your functions.

The Problem: Integrating Fortran with Numpy Arrays

You might have a Fortran function designed to calculate the error function, often denoted as erf. You want this function to efficiently handle both scalar float inputs and Numpy arrays. While using f2py to compileFortran code for Python, some users have reported that the precision of float results is somehow lowered when returning values for single float inputs, leading to confusion.

Example Scenario

In this example, you might have written a subroutine in Fortran that expects an array input to perform calculations as follows:

[[See Video to Reveal this Text or Code Snippet]]

After compiling with f2py, users expect results like this:

[[See Video to Reveal this Text or Code Snippet]]

However, the output might appear as:

[[See Video to Reveal this Text or Code Snippet]]

The Solution: Understanding Precision in Python and Numpy

It's crucial to realize that the discrepancy in the number of displayed digits does not indicate a loss of precision in the calculation. Python and Numpy will often display floating-point numbers with fewer digits in their default representation. However, the underlying values remain precise. For instance, let's look at how Numpy handles float representations:

[[See Video to Reveal this Text or Code Snippet]]

Key Takeaways

Precision: Numpy can represent your float in a certain style, but using .item() can retrieve the exact float with correct precision.

Display Mode: Understand the default display settings of Numpy, which might lead to confusion about whether values are truly precise or not.

Conclusion

By being aware of how Numpy represents floating-point numbers, you can confidently integrate Fortran code into your Python environment without losing precision. Remember, if you require the full precision of your calculations, use .item() to retrieve the original float. This approach will ensure you get the results you expect from your computations.

Explore Further

For those interested in diving deeper into Fortran integration with Python, consider looking into more about f2py, as it significantly simplifies the process of interfacing between the two languages.

Now you can confidently work with Fortran and Numpy together, ensuring that you maintain precision throughout your calculations and analyses. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]