Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Remove Duplicates in Two Columns Using pandas

  • vlogize
  • 2025-10-04
  • 0
How to Remove Duplicates in Two Columns Using pandas
How can I remove same words in both columns? Duplicates in both rowspandas
  • ok logo

Скачать How to Remove Duplicates in Two Columns Using pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Remove Duplicates in Two Columns Using pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Remove Duplicates in Two Columns Using pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Remove Duplicates in Two Columns Using pandas

Learn how to effectively remove duplicate entries from two columns in a DataFrame using `pandas`. Follow our step-by-step guide to streamline your data processing.
---
This video is based on the question https://stackoverflow.com/q/63727589/ asked by the user 'AlexGo' ( https://stackoverflow.com/u/14216101/ ) and on the answer https://stackoverflow.com/a/63727730/ provided by the user 'IoaTzimas' ( https://stackoverflow.com/u/8228558/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How can I remove same words in both columns? Duplicates in both rows

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Remove Duplicates in Two Columns Using pandas

When working with data in Python, especially in data science and analysis, pandas is a go-to library for data manipulation. One common problem users encounter is the presence of duplicate entries in multiple columns. In this guide, we'll tackle a practical scenario where we need to remove duplicate entries in both columns of a DataFrame. Let's use the example of states and region names to make our explanation clear and relatable.

The Problem

Imagine we have a DataFrame with two columns: State and RegionName. In this situation, we want to delete rows where the entries in both columns match. For example, if a row has the following data:

State: Alabama

RegionName: Alabama

We aim to remove such cases while keeping rows where the values don’t match. Our desired outcome would retain rows like this:

State: Alabama, RegionName: Auburn

State: Alabama, RegionName: Florence

Removing these duplicates correctly will help in keeping the data clean and more useful for analysis.

The Solution

Instead of trying to loop through the DataFrame, which can be inefficient and complicated, pandas provides a simple, efficient way to filter out these duplicates using built-in methods. Let’s break it down step by step.

Step 1: Understand Your DataFrame

Here’s a sample of what our initial DataFrame looks like:

StateRegionNameAlabamaAlabamaAlabamaAuburnAlabamaFlorenceStep 2: Use Filtering to Remove Duplicates

To eliminate rows where the State and RegionName columns are equal, we can use filtering with boolean indexing. The code snippet below demonstrates this approach:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Understand the Code

Importing pandas: We first import pandas as it provides the necessary functions to handle DataFrames.

Creating a DataFrame: We create a DataFrame df with our sample data showcasing states and region names.

Filtering with a condition: The key line new_df = df[df['RegionName'] != df['State']] filters the DataFrame, keeping only rows where the RegionName does not equal State.

Displaying the Result: Finally, we print new_df to see our updated DataFrame.

Step 4: Final Output

The output from the above code will be:

StateRegionNameAlabamaAuburnAlabamaFlorenceThis gives us a clean DataFrame that retains only the relevant entries without duplicates in both columns.

Conclusion

Using pandas to manage and filter data can significantly enhance data processing efficiency. By using straightforward filtering techniques, you can easily clean your DataFrame and remove unwanted duplicates across columns. The approach outlined here can be adapted to various scenarios, ensuring your data remains organized and useful!

Now that you know how to handle duplicate entries in two columns, try applying this technique to your datasets. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]