Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Remove Suffix from a Pandas DataFrame or Series in Python

  • vlogize
  • 2025-05-27
  • 3
How to Remove Suffix from a Pandas DataFrame or Series in Python
Remove Suffix from Series or DataFramepythonstringdataframe
  • ok logo

Скачать How to Remove Suffix from a Pandas DataFrame or Series in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Remove Suffix from a Pandas DataFrame or Series in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Remove Suffix from a Pandas DataFrame or Series in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Remove Suffix from a Pandas DataFrame or Series in Python

Learn how to efficiently remove unwanted suffixes from your data using Pandas in Python and troubleshoot common errors.
---
This video is based on the question https://stackoverflow.com/q/65397315/ asked by the user 'Tickets2Moontown' ( https://stackoverflow.com/u/14443410/ ) and on the answer https://stackoverflow.com/a/65397516/ provided by the user 'Prateek Jain' ( https://stackoverflow.com/u/14849533/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Remove Suffix from Series or DataFrame

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Removing Suffix from a Pandas DataFrame or Series in Python

When working with datasets in Python, particularly using the Pandas library, you may encounter situations where you need to clean or manipulate string data. One common issue is the need to remove unwanted suffixes from the values in a DataFrame or Series. For instance, you might want to strip off the '00' suffix from a list of phone numbers or IDs as shown below.

Example Dataset

Consider the following dataset, which illustrates a series of numbers:

[[See Video to Reveal this Text or Code Snippet]]

The Problem

When attempting to remove the '00' suffix from the values in your DataFrame, you might use code like this:

[[See Video to Reveal this Text or Code Snippet]]

Unfortunately, you may encounter an error:

[[See Video to Reveal this Text or Code Snippet]]

This issue arises because the removesuffix method is not available in earlier versions of Pandas. If you experience this error, don’t worry! There’s a straightforward solution to achieve your goal.

Solution: Remove the Suffix Manually

Instead of using the unavailable removesuffix method, you can apply a more manual approach to achieve the desired results. Below is a step-by-step guide on how to remove the '00' suffix from your DataFrame.

Step-by-Step Code

Create Your Data: Start by creating a list with your initial dataset.

[[See Video to Reveal this Text or Code Snippet]]

Initialize an Empty List: Prepare an empty list to store the modified values.

[[See Video to Reveal this Text or Code Snippet]]

Loop Through the Data: For each value in your original list, convert it to a string and check if it ends with '00'.

[[See Video to Reveal this Text or Code Snippet]]

View the Result: Your new list b will now hold the modified values without the '00' suffix.

Final Code Example

Here’s the complete code wrapped in a single snippet:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

While the Pandas library offers a rich set of functionalities for data manipulation, sometimes you may encounter methods that are unavailable or unsupported in your version. By understanding how to loop through your data and manipulate string values directly, you can effectively manage and clean your datasets.

Feel free to adapt this approach for any similar needs in your data processing tasks! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]