Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Discrete Time Dependent Updates in ODE Simulation using odeint in Python

  • vlogize
  • 2025-04-03
  • 1
Discrete Time Dependent Updates in ODE Simulation using odeint in Python
How do I perform a discrete time dependent update to my variables while using odeint in python?pythonnumpyscipyodeodeint
  • ok logo

Скачать Discrete Time Dependent Updates in ODE Simulation using odeint in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Discrete Time Dependent Updates in ODE Simulation using odeint in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Discrete Time Dependent Updates in ODE Simulation using odeint in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Discrete Time Dependent Updates in ODE Simulation using odeint in Python

Discover how to implement `discrete time dependent updates` while simulating ODEs using `odeint` in Python. Learn step-by-step methods to solve your problems effectively.
---
This video is based on the question https://stackoverflow.com/q/73949010/ asked by the user 'skr98' ( https://stackoverflow.com/u/20158886/ ) and on the answer https://stackoverflow.com/a/73964788/ provided by the user 'Lutz Lehmann' ( https://stackoverflow.com/u/3088138/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How do I perform a discrete time dependent update to my variables while using odeint in python?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Perform Discrete Time Dependent Updates in ODEs using odeint

When working with a system of ordinary differential equations (ODEs) in Python, you may encounter the need to perform updates on your variables at specific time points during the simulation. This can be particularly tricky when you're using the odeint function from the SciPy library, as the incoming time values are typically floating-point numbers, making it difficult to implement conditions based on discrete time intervals.

In this guide, we'll explore this issue and provide a step-by-step solution to implement discrete time dependent updates on your variables during ODE integration using Python.

The Problem

While simulating ODEs with odeint, you may want to modify the state of your variables at certain time points—for example, increasing a variable's value by a certain factor at specific intervals like 25, 50, or 75. However, since odeint operates with floating-point time values, applying conditions like if t % 25 == 0 becomes complicated.

Example Code

Consider the following initial implementation:

[[See Video to Reveal this Text or Code Snippet]]

Here, you define a time span vector and an initial condition. However, observing that the values of t are floating-point numbers complicates the conditional statements needed for your variable updates.

The Solution

Understanding the ODE Integration Process

Before jumping into a solution, it's essential to understand that generic ODE solvers like odeint use an adaptive step size and may take multiple evaluations for each output step. This means they might be processing several internal steps between any two output time points.

Implementing the Update Mechanism

To perform discrete time-dependent updates, rather than attempting to change the system parameters directly in the myfunc, we need to split the integration process into distinct segments where changes occur. After each segment, we will apply the necessary updates and then restart the integration.

Here's how you can implement this step-by-step solution:

Define your initial conditions and segments: Create small time slices where changes will occur.

Integrate each segment:

Perform the integration over a defined time span.

Update the state variable as needed.

Concatenate results:

After multiple integrations, combine the results to create a comprehensive solution.

Sample Code Implementation

[[See Video to Reveal this Text or Code Snippet]]

Using a Loop for More Segments

For scenarios with more frequent state changes, consider implementing a loop:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By breaking the integration process into segments, you can effectively manage and implement discrete updates to your variables in ODE simulations using Python's odeint. This method not only organizes your code better but also provides a clear structure for handling state changes based on predefined conditions.

Experiment with this approach, and you'll find that simulating complex systems with discrete variables becomes more intuitive and manageable!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]