Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Calculas 12 : Function of several variables : Taylor's Theorem

  • James Bond (OO7)
  • 2025-10-05
  • 4
Calculas 12 : Function of several variables : Taylor's Theorem
  • ok logo

Скачать Calculas 12 : Function of several variables : Taylor's Theorem бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Calculas 12 : Function of several variables : Taylor's Theorem или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Calculas 12 : Function of several variables : Taylor's Theorem бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Calculas 12 : Function of several variables : Taylor's Theorem

#ContinuityAndDifferentiability #MultivariableCalculusUPSC #UPSC2026MathematicsOptional #FunctionsOfSeveralVariablesUPSC #UPSCMath2026 #UPSCMathOptionalConcepts #UPSCMathematicsPreparation #UPSCAdvancedCalculus #UPSCOptionalNotes #MathematicsOptional2026




“Why did the concept of continuity and differentiability for functions of several variables evolve?”

Let’s understand it conceptually and historically 👇


---

🧭 1. The Need for Multiple Variables

In the beginning (17th–18th century), calculus mainly dealt with functions of one variable — like .

But in real-world problems, outcomes often depend on more than one factor, for example:

Pressure depends on position in space

Temperature depends on space and time

Profit depends on price and quantity


Hence, mathematicians needed a general theory for functions like .


---

🔍 2. Evolution of “Continuity” for Many Variables

In one-variable calculus:

A function is continuous if its graph is unbroken.



But for functions of two or more variables:

The graph is a surface (or hypersurface) in higher-dimensional space.



Continuity needed to be redefined so that the function behaves smoothly in every direction approaching a point.

That’s why the limit definition was extended from:

\lim_{x \to a} f(x) = f(a)

\lim_{(x, y) \to (a, b)} f(x, y) = f(a, b)


---

⚙️ 3. Evolution of “Differentiability”

For one variable, differentiability gives:

The slope of the tangent line.



For several variables, we no longer have a line — we have a tangent plane (for 2 variables) or tangent hyperplane (for many variables).

So the concept evolved to:

“Differentiable” means the function can be well-approximated by a linear function near the point.



That led to partial derivatives and gradient vectors, tools that describe how the function changes in each direction.


---

🧠 4. Why It Matters

This evolution allowed us to:

Analyze multidimensional change (e.g., in physics, economics)

Develop vector calculus (gradient, divergence, curl)

Study optimization problems with constraints (Lagrange multipliers)

Formulate multivariable Taylor series and higher-dimensional approximations.



---

📜 Summary

Concept : One variable Several variables
Why it evolved

Continuity Smooth curve Smooth surface Needed for real-world multivariable functions
Differentiability Tangent line Tangent plane/hyperplane To generalize rate of change
Derivative Single number Vector/matrix (partial derivatives, gradient) To describe change in all directions



---

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]