Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Select Column by Row's Value in a Spark DataFrame

  • vlogize
  • 2025-09-25
  • 0
How to Select Column by Row's Value in a Spark DataFrame
Spark DataFrame: Select column by row's valueapache sparkpysparkapache spark sql
  • ok logo

Скачать How to Select Column by Row's Value in a Spark DataFrame бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Select Column by Row's Value in a Spark DataFrame или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Select Column by Row's Value in a Spark DataFrame бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Select Column by Row's Value in a Spark DataFrame

Learn how to efficiently select columns in a Spark DataFrame based on a threshold value, even when dealing with a large dataset.
---
This video is based on the question https://stackoverflow.com/q/62887001/ asked by the user 'rosefun' ( https://stackoverflow.com/u/9276708/ ) and on the answer https://stackoverflow.com/a/62888120/ provided by the user 'Som' ( https://stackoverflow.com/u/4758823/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Spark DataFrame: Select column by row's value

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Select Column by Row's Value in a Spark DataFrame

When working with Spark DataFrames, particularly those with a large number of columns, you may encounter challenges when trying to filter or select specific columns based on their values. This article will guide you through a solution for selecting a column based on a row's value using Apache Spark and its DataFrame capabilities.

The Problem

Consider a scenario where you have a Spark DataFrame containing only one row (but with approximately 20,000 columns). You want to select columns that have values greater than a certain threshold, such as 5. The DataFrame is as follows:

[[See Video to Reveal this Text or Code Snippet]]

If you tried to convert this DataFrame to a dictionary in an attempt to count the values, you might run into a max Heap size error due to memory limitations.

The expected output for filtering values greater than 5 from the DataFrame is:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

To resolve the issue of selecting columns based on the row's values without encountering memory errors, we can utilize Spark's built-in functions to transpose and filter the DataFrame efficiently. Here's how to do it step-by-step:

Step 1: Transpose the DataFrame

This involves converting columns into rows. In Spark, we can use SQL expressions to achieve this. First, we define our threshold and prepare the columns:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Create a Stacked Column Structure

Next, we will create a stacked structure using the DataFrame's columns and their values:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Filter the Values

Now, apply the filter to select only those values greater than the threshold we set:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Viewing the Results

When you run the above code, the output will show only the columns with values that exceed the threshold:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Filtering columns in a Spark DataFrame where values surpass a certain threshold can be challenging, especially in cases of large datasets. However, by leveraging Spark's SQL capabilities, you can efficiently transpose the DataFrame, create a stacked column representation, and apply filters without running into memory issues.

This method helps in optimizing your data workflow while ensuring accuracy and efficiency in handling large datasets.

Now, you have a powerful approach to select columns based on row values in your Spark DataFrame!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]