Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Discovering and Exploiting Deterministic Label Relationships in Multi-Label Learning

  • Association for Computing Machinery (ACM)
  • 2015-10-21
  • 245
Discovering and Exploiting Deterministic Label Relationships in Multi-Label Learning
  • ok logo

Скачать Discovering and Exploiting Deterministic Label Relationships in Multi-Label Learning бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Discovering and Exploiting Deterministic Label Relationships in Multi-Label Learning или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Discovering and Exploiting Deterministic Label Relationships in Multi-Label Learning бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Discovering and Exploiting Deterministic Label Relationships in Multi-Label Learning

Authors: Christina Papagiannopoulou, Grigorios Tsoumakas, Ioannis Tsamardinos

Abstract:

This work presents a probabilistic method for enforcing adherence of the marginal probabilities of a multi-label model to automatically discovered deterministic relationships among labels. In particular we focus on discovering two kinds of relationships among the labels. The first one concerns pairwise positive entailment: pairs of labels, where the presence of one implies the presence of the other in all instances of a dataset. The second concerns exclusion: sets of labels that do not coexist in the same instances of the dataset. These relationships are represented as a deterministic Bayesian network. Marginal probabilities are entered as soft evidence in the network and through probabilistic inference become consistent with the discovered knowledge. Our approach offers robust improvements in mean average precision compared to the standard binary relevance approach across all 12 datasets involved in our experiments. The discovery process helps interesting implicit knowledge to emerge, which could be useful in itself.

ACM DL: http://dl.acm.org/citation.cfm?id=278...
DOI: http://dx.doi.org/10.1145/2783258.278...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]