Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Sum NA Across Specific Columns in R Using dplyr

  • vlogize
  • 2025-10-07
  • 1
How to Sum NA Across Specific Columns in R Using dplyr
Sum NA across specific columns in Rdplyrmissing datamagrittrmethod missing
  • ok logo

Скачать How to Sum NA Across Specific Columns in R Using dplyr бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Sum NA Across Specific Columns in R Using dplyr или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Sum NA Across Specific Columns in R Using dplyr бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Sum NA Across Specific Columns in R Using dplyr

Learn how to effectively calculate and sum missing responses (NAs) in specific columns using `dplyr` in R. Follow our step-by-step guide for clear implementation.
---
This video is based on the question https://stackoverflow.com/q/64054676/ asked by the user 'NewBee' ( https://stackoverflow.com/u/10491497/ ) and on the answer https://stackoverflow.com/a/64054694/ provided by the user 'akrun' ( https://stackoverflow.com/u/3732271/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Sum NA across specific columns in R

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Sum NA Across Specific Columns in R Using dplyr

When working with data in R, particularly with surveys or datasets containing responses, it's common to encounter missing values, represented as NA (Not Available). Analyzing these missing values can provide insights into data completeness and enable better data cleaning processes. In this guide, we'll explore how to sum missing responses across specific columns in R using the dplyr package.

Understanding the Problem

Suppose you have a dataset with multiple columns that contain survey responses, some of which may be missing. Your goal is to calculate the number of missing responses for certain sets of columns. For example, you might want to calculate how many responses are missing from the Q62 columns (Q62_1 and Q62_2) and another set of columns (Q3_1 to Q3_5).

Here's a sample dataset similar to what we will be working with:

[[See Video to Reveal this Text or Code Snippet]]

Your expected output should look like this:

[[See Video to Reveal this Text or Code Snippet]]

The Solution: Using dplyr to Calculate NAs

Method 1: Using rowSums with is.na

One efficient way to count the missing values in selected columns is to leverage rowSums along with is.na. This approach converts your selected columns into a logical matrix where TRUE represents an NA.

Here’s how you can implement it in your R script:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code:

select(., "Q62_1", "Q62_2"): Selects the columns of interest (Q62_1 and Q62_2).

is.na(...): Checks for NA values, converting them into a logical matrix.

rowSums(...): Sums up the TRUE values per row, giving the count of NAs for each specified column set.

Method 2: Using c_across and rowwise

For a more modern approach, particularly when dealing with multiple columns with similar patterns, you can use the c_across function combined with rowwise. This offers a clean syntax for specifying ranges of columns:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code:

rowwise(): This function allows you to operate on rows individually.

c_across(starts_with("Q62")): Selects all columns starting with "Q62".

sum(is.na(...)): Counts NAs in the selected column sets for each row.

Conclusion

By employing the above methods, you can efficiently calculate the number of missing responses in your dataset using R’s powerful dplyr library. Whether using rowSums or the newer c_across, both methods provide straightforward solutions to analyze the completeness of your survey data.

Now that you’ve learned how to handle missing data in R, you can ensure the quality and usability of your datasets. Happy data analysis!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]