Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Normalizing Nested JSON to a Pandas DataFrame

  • vlogize
  • 2025-08-19
  • 0
Normalizing Nested JSON to a Pandas DataFrame
python- normalize nested json to pandas dataframepythonjsonpandasdataframe
  • ok logo

Скачать Normalizing Nested JSON to a Pandas DataFrame бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Normalizing Nested JSON to a Pandas DataFrame или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Normalizing Nested JSON to a Pandas DataFrame бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Normalizing Nested JSON to a Pandas DataFrame

Learn how to efficiently normalize nested JSON into a Pandas DataFrame and manage unique IDs for smooth data handling.
---
This video is based on the question https://stackoverflow.com/q/64980200/ asked by the user 'jpc151' ( https://stackoverflow.com/u/9938507/ ) and on the answer https://stackoverflow.com/a/64980264/ provided by the user 'Chris' ( https://stackoverflow.com/u/7093741/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: python- normalize nested json to pandas dataframe

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Normalizing Nested JSON to a Pandas DataFrame: A Step-by-Step Guide

In today's data-driven world, working with JSON data is an essential skill for many programmers and data analysts alike. Often, we encounter situations where we need to flatten nested JSON structures for further analysis or integration into SQL tables. In this guide, we will specifically address the challenge of normalizing nested JSON to create a Pandas DataFrame that includes unique identifiers.

The Problem

The challenge arises when we have a complex JSON structure, like the following sample:

[[See Video to Reveal this Text or Code Snippet]]

This JSON has unique identifiers (e.g., 138082239, 138082238) nested within it. When we try to flatten this using pd.json_normalize(), we may end up with output columns like data.138082239, data.138082238, etc. This isn't ideal for our analysis where we want a structured DataFrame that includes these IDs directly.

Desired DataFrame Output

We want the DataFrame to resemble the following structure:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

To efficiently normalize this nested JSON into a DataFrame, we can use a combination of list comprehension and the pandas.DataFrame.assign() method. Let's break it down step-by-step.

Step 1: Import Required Libraries

Make sure to have the pandas library installed in your Python environment. If not, you can install it using pip:

[[See Video to Reveal this Text or Code Snippet]]

Then, import the necessary library:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Pull the JSON Data

Using the requests library, you can retrieve your JSON data from the API:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Normalize the JSON Data

To normalize the JSON data and create the DataFrame, you can employ the following code snippet:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Select Desired Columns

Finally, select the columns you wish to display in your DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Output

Upon execution, the output will be:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By following the above steps, you can successfully normalize nested JSON into a structured Pandas DataFrame, allowing for efficient data handling. With this approach, you also maintain unique identifiers, ensuring you can easily reference or query your data later on.

If you run into complications or require further assistance, feel free to leave a comment below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]