Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Work with Categorical Data - Part 2 | #26 of 53: The Complete Pandas Course

  • machinelearningplus
  • 2022-05-19
  • 805
Work with Categorical Data - Part 2 | #26 of 53: The Complete Pandas Course
Keith GalliPython 3Python ProgrammingData SciencePython PandasPandasPandas Librarypdpython data science tutorialExcelCsvReading CSV in PythonData Science in PythonPython Pandas tutorialData analysis in pythonhow to do data analysis using pythonNumpyReading excel files with pythonsorting datapandas library tutorialsimpleeasyindex python pandasstats in pythonmachinelarningpluscategoricaldata
  • ok logo

Скачать Work with Categorical Data - Part 2 | #26 of 53: The Complete Pandas Course бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Work with Categorical Data - Part 2 | #26 of 53: The Complete Pandas Course или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Work with Categorical Data - Part 2 | #26 of 53: The Complete Pandas Course бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Work with Categorical Data - Part 2 | #26 of 53: The Complete Pandas Course

Course materials Github: https://github.com/machinelearningplu...

Join Pandas course on ML+: https://edu.machinelearningplus.com/c...

-----------------------------------------

Continuing the Last video about Categorical data in Pandas. We have learned what is Categorical data and how to do this. Now we'll see how it actually works in real time ML models.

Checkout complete Data Scientist Learning Path here: https://edu.machinelearningplus.com/s...

Join ML+ membership for exclusive Data science content


🔹 Learn how to categorical data in your machine learning model.

The answer is it need not be because it can be possible that you can have more categories in Cat Dog categories in this variable, there can be many other categories also that are not actually part of the data.

But cat dot unique will always give you only the unique values that is always present in that data. Right? If there is no other extra categories, if there are no other redundant categories present inside this inside this variable, then in that case, the result of both of these comments will be the same. All right, now how about series if you create a series, and you've said that the type as a category, you can access the categorical attributes of that series inside that series name, the variable name, dot cat, and then categories, right here this under this object, all the category related attributes are stored.

Now, to add a new category, you have a special method called add categories, right here, let's run this code, let's create the series this is a categorical series, the categories of this series can be seen here, right if you want to create or add a new category to this list of categories, you can
use this add categories method and get that now you have added a new category called missing, but that is not actually part of this data.

Now, we have an unused category in this list right this is a redundant category, if you want to remove it, you have a method called remove unused categories right now, that additional missing category is gone from this list.

Yeah, next, you can also remove an existing category amongst these four categories, if we want to remove say that the category here you can remove that as well, wherever D occurs, it will now be shown as a missing value.

Finally, you can also have intrinsic ordering within your categorical
variables. For instance, by setting order equal to true by setting this particular attribute order equal to two, you create an interesting ordering to that categories of your variable here, by default, the order in which it is occurring is lesser than B B is lesser than C.

So, this is the intrinsic ordering, if you want to change the order of this ordering also that is also possible. This one shows the different codes of these variables right this variable A B C a is actually stored internally in this format 0120 these are the different codes.

#machinelearningplus #python #pandasdatascience


Let me know in the comments section if you have any questions!


🤝 Like, Share, Subscribe for more!


Follow us on our social media handles for all updates, events and live sessions-

✅ Instagram:   / machinelearningplus  

✅ LinkedIn:   / machine-learning-plus  

✅ YouTube:    / numyard  

✅ Twitter:   / r_programming  

✅ Website: https://www.machinelearningplus.com/


If you enjoyed this video, be sure to throw it a like and make sure to subscribe to not miss any future videos!


Thanks for watching!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]