Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Complete ✅ Day3 in kaggle

  • Creative_short_Reels
  • 2025-11-11
  • 25
How to Complete ✅ Day3 in kaggle
  • ok logo

Скачать How to Complete ✅ Day3 in kaggle бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Complete ✅ Day3 in kaggle или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Complete ✅ Day3 in kaggle бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Complete ✅ Day3 in kaggle

The Kaggle Day 3 sessions, often labeled 3a and 3b, are typically part of a structured learning course, such as the 5-Day Generative AI Intensive Course with Google or the 30 Days of ML challenge.
Based on the search results, the most current and detailed description points to the 5-Day Generative AI Intensive Course with Google.
🤖 Generative AI Course: Day 3 - Building AI Agents
In the Kaggle 5-Day Generative AI Intensive Course, Day 3 focuses on Generative AI Agents and specifically covers Function Calling with the Gemini API and Building an Agent with LangGraph.
3a: Function Calling with the Gemini API
This session teaches you how to leverage the Gemini API's automatic function calling capability.
Goal: To connect an LLM (like Gemini) to external systems and real-world data.
Activity: You build a chat interface that can query a local database (like an SQLite database) using natural language.
Key Concept: Giving the LLM "tools" (functions) to understand and interact with data beyond its initial training. For example, a chatbot might use a SQL function tool to retrieve information from a database.
3b: Building an Agent with LangGraph
This session introduces an advanced framework for building more complex, stateful AI applications.
Goal: To build sophisticated AI agents by defining their core components and the iterative development process.
Activity: You use the LangGraph library to define a graph-based application. The common example is building a simulated "BaristaBot" cafe ordering system.
Key Concept: Agents in this context are built around a graph structure, where each node represents an action (like calling the LLM or an API) and the state of the application (the customer's order) is propagated through the graph as the conversation progresses.
💻 Python Challenge: Day 3
If your challenge refers to the older Kaggle Learn Python Challenge, Day 3 is about:
Topic: Functions and Getting Help.
Content: Learning how to work with and define functions, which are reusable blocks of code. You also learn how to use the built-in help() function in Python.
Would you like me to find the specific video and give you a more detailed outline of its content?

please subscribe to my channel 🙏

#kaggle #google #students #studentcmp

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]