Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть [Advanced Learning Algorithms] 37.Establishing a baseline level of performance

  • My Course
  • 2024-01-18
  • 1226
[Advanced Learning Algorithms] 37.Establishing a baseline level of performance
  • ok logo

Скачать [Advanced Learning Algorithms] 37.Establishing a baseline level of performance бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно [Advanced Learning Algorithms] 37.Establishing a baseline level of performance или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку [Advanced Learning Algorithms] 37.Establishing a baseline level of performance бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео [Advanced Learning Algorithms] 37.Establishing a baseline level of performance

Let's look at some concrete numbers for what J-train and JCV might be, and see how you can judge if a learning algorithm has high bias or high variance. For the examples in this video, I'm going to use as a running example the application of speech recognition which is something I've worked on multiple times over the years. Let's take a look. A lot of users doing web search on a mobile phone will use speech recognition rather than type on the tiny keyboards on our phones because speaking to a phone is often faster than typing. Typical audio that's a web search engine we get would be like this, "What is today's weather?" Or like this, "Coffee shops near me." It's the job of the speech recognition algorithms to output the transcripts whether it's today's weather or coffee shops near me. Now, if you were to train a speech recognition system and measure the training error, and the training error means what's the percentage of audio clips in your training set that the algorithm does not transcribe correctly in its entirety. Let's say the training error for this data-set is 10.8 percent meaning that it transcribes it perfectly for 89.2 percent of your training set, but makes some mistake in 10.8 percent of your training set. If you were to also measure your speech recognition algorithm's performance on a separate cross-validation set, let's say it gets 14.8 percent error. If you were to look at these numbers it looks like the training error is really high, it got 10 percent wrong, and then the cross-validation error is higher but getting 10 percent of even your training set wrong that seems pretty high. It seems like that 10 percent error would lead you to conclude it has high bias because it's not doing well on your training set, but it turns out that when analyzing speech recognition it's useful to also measure one other thing which is what is the human level of performance? In other words, how well can even humans transcribe speech accurately from these audio clips? Concretely, let's say that you measure how well fluent speakers can transcribe audio clips and you find that human level performance achieves 10.6 percent error...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]