Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Drop Rows in Pandas Based on Specific Conditions

  • vlogize
  • 2025-05-26
  • 0
How to Drop Rows in Pandas Based on Specific Conditions
Drop row if string is not equal to value - pandaspythonpandas
  • ok logo

Скачать How to Drop Rows in Pandas Based on Specific Conditions бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Drop Rows in Pandas Based on Specific Conditions или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Drop Rows in Pandas Based on Specific Conditions бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Drop Rows in Pandas Based on Specific Conditions

Learn how to efficiently drop rows in pandas DataFrames when specific conditions are not met, using a practical example with clear code snippets.
---
This video is based on the question https://stackoverflow.com/q/67085285/ asked by the user 'Chopin' ( https://stackoverflow.com/u/9029949/ ) and on the answer https://stackoverflow.com/a/67085744/ provided by the user 'Nk03' ( https://stackoverflow.com/u/15438033/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Drop row if string is not equal to value - pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Drop Rows in Pandas Based on Specific Conditions

When working with data in Python, particularly using the pandas library, it’s common to encounter scenarios where you need to filter a DataFrame by certain criteria. In this guide, we will address a specific problem: how to drop rows in a pandas DataFrame if the string after a specific value is not equal to a list of values. This can be invaluable for cleaning up datasets where certain relationships or sequences of data must be maintained.

Understanding the Problem

Imagine you have a pandas DataFrame with two columns: Label and Item. You want to remove certain rows based on the following rules:

If the current row has an Item value of either 'Up' or 'Left', you want to check what follows in the next row.

If the subsequent row is neither 'Right' nor 'Down', the current row should be dropped.

Example of the Dataset

Here is a sample DataFrame we're starting with:

[[See Video to Reveal this Text or Code Snippet]]

Sample Output Requirement

Given the above DataFrame, we want the intended output to only include rows that meet our specified conditions. For instance, we want to drop rows such as:

Where 'Left' is not followed by 'Right' or 'Down'.

Where 'Up' is not followed by 'Right' or 'Down'.

The desired output should look like this:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

To address this issue, we will create a mask that specifies which rows to keep based on our criteria. Below, I will walk you through the necessary steps to implement the solution.

Step 1: Creating the Mask

First, we'll create a mask that identifies rows that do not meet our criteria and then use this mask to filter our DataFrame. Here's the adjusted code:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Output the Filtered DataFrame

After applying the mask, we can print the filtered DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Final Output

Running the above code will give us the desired output where all rows that do not meet our criteria have been removed.

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By creating a well-defined mask using pandas, we are able to effectively filter our DataFrame based on specific conditions concerning the sequences of values. This method can be adapted to suit other similar filtering needs, making it a powerful tool in the data wrangling process. If you often work with pandas, mastering these techniques can drastically improve your data manipulation capabilities.

Feel free to experiment with different values and criteria to see how versatile pandas can be for your data projects!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]