Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Split a DataFrame in Python: A Step-by-Step Guide to Data Manipulation

  • vlogize
  • 2025-09-22
  • 0
Efficiently Split a DataFrame in Python: A Step-by-Step Guide to Data Manipulation
  • ok logo

Скачать Efficiently Split a DataFrame in Python: A Step-by-Step Guide to Data Manipulation бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Split a DataFrame in Python: A Step-by-Step Guide to Data Manipulation или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Split a DataFrame in Python: A Step-by-Step Guide to Data Manipulation бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Split a DataFrame in Python: A Step-by-Step Guide to Data Manipulation

This guide teaches you how to split a DataFrame in Python using pandas, apply operations to each subset, and export results to multiple files without nested loops. Perfect for big datasets!
---
This video is based on the question https://stackoverflow.com/q/63306075/ asked by the user 'big_soapy' ( https://stackoverflow.com/u/13123861/ ) and on the answer https://stackoverflow.com/a/63306370/ provided by the user 'ALollz' ( https://stackoverflow.com/u/4333359/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Function to split DF into multiple DFs and perform all operations on each one

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Split a DataFrame in Python: A Step-by-Step Guide to Data Manipulation

Working with large datasets can be both exciting and challenging. One of the common tasks data professionals encounter is the need to split a DataFrame into smaller subsets for more targeted manipulation and analysis. This guide walks you through the process of splitting a DataFrame in Python using pandas, performing operations on each subset, and exporting the results into separate files.

Problem: The Need to Split a Large DataFrame

Imagine you have a large DataFrame with approximately 20,000 rows containing various data points. Your goal is to split this single DataFrame into multiple smaller DataFrames, specifically into groups based on unique combinations of two columns: Type and Name. From one large DataFrame, you ultimately want to create 18 separate Excel or CSV files for later analysis and reporting. This task can quickly become complicated, especially when you need to perform multiple operations on each subset.

The Challenge

Multiple Rows: The original DataFrame can be quite large.

Multiple Unique Groups: You want to split based on unique values from two different columns.

Performing Operations: Each subset needs various mathematical operations applied to it—without using deeply nested loops, which can make the code less readable.

Solution: Using DataFrame.groupby Method

The mantra of DataFrame.groupby is well-known: "split-apply-combine." In this case, instead of combining at the end, we will use a modified approach: "split-apply-export." This technique allows us to manage data with clarity and efficiency.

Step-by-Step Implementation

Step 1: Import Libraries

Start by importing the necessary library, pandas.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Group Data

The fundamental concept here is to use the groupby function. Here’s how you can break down the data:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Apply Operations

For every subset gp, you can now run any complex operations you need. For example, let’s say you want to multiply the values in the 'small' column by 3:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Export Data

Finally, you will need to export each subset to a CSV file. The file name can be dynamically generated from the idx values.

[[See Video to Reveal this Text or Code Snippet]]

Complete Example Code

Here’s how all the pieces fit together:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion: Simplified Execution

By using the groupby method in pandas, you can effectively split a large DataFrame into meaningful parts based on specified criteria, apply necessary operations, and finally export the results—all without the headaches of nested loops and complex indentation.

Final Thoughts

This approach not only simplifies your workflow but also enhances the readability and maintainability of your code. Now, you are ready to implement this in your own projects, enabling you to work efficiently with large datasets. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]