Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficient Row-wise Cumulative Product in Large Data Tables: A Benchmarking Guide

  • vlogize
  • 2025-03-28
  • 0
Efficient Row-wise Cumulative Product in Large Data Tables: A Benchmarking Guide
Row-wise cumulative product on large data.table benchmarkingdataframedata.tablebenchmarking
  • ok logo

Скачать Efficient Row-wise Cumulative Product in Large Data Tables: A Benchmarking Guide бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficient Row-wise Cumulative Product in Large Data Tables: A Benchmarking Guide или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficient Row-wise Cumulative Product in Large Data Tables: A Benchmarking Guide бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficient Row-wise Cumulative Product in Large Data Tables: A Benchmarking Guide

Discover effective methods for calculating row-wise cumulative products in large data.tables using R. This guide provides insights into better performance techniques and benchmarking results.
---
This video is based on the question https://stackoverflow.com/q/74649172/ asked by the user 'Algebro1000' ( https://stackoverflow.com/u/10124146/ ) and on the answer https://stackoverflow.com/a/74652128/ provided by the user 'Waldi' ( https://stackoverflow.com/u/13513328/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Row-wise cumulative product on large data.table benchmarking

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficient Row-wise Cumulative Product in Large Data Tables: A Benchmarking Guide

When working with large datasets in R, especially using the data.table package, performance and efficiency are crucial. One common task is computing cumulative products row-wise across extensive matrices. In this post, we will address the challenge of computing monthly survival rates from daily mortality rates represented in a large data.table with thousands of columns and rows.

The Problem: Computing Monthly Survival Rates

For example, suppose we have a data.table representation of daily mortality rates structured as follows: 1000 columns and 100,000 rows. Each columns could represent daily mortality rates that decrease over time. The objective is to transform these daily rates into monthly survival rates. The naive approach used for such operations may not be the most efficient one.

The code snippet below demonstrates how you might initially calculate these monthly survival rates:

[[See Video to Reveal this Text or Code Snippet]]

However, finding faster or cleaner alternatives for performing these row-wise cumulative products is essential for effective data management and analysis.

Exploring Alternative Solutions

1. Using apply Function

One alternative approach involves the apply function which allows you to perform operations row-wise. Here’s the code you might implement:

[[See Video to Reveal this Text or Code Snippet]]

In this instance, .SD refers to the Subset of Data for the current frame, indicating the use of apply to each row for the cumulative product of the modified data.

2. Using Reduce in data.table

The original method noted uses Reduce which aggregates results from the input function (in this case the multiplication of adjusted columns). Benchmark results indicate that this method may be faster while maintaining similar results:

[[See Video to Reveal this Text or Code Snippet]]

3. Benchmarking Results

When benchmarking the two methods, the following performance times (in milliseconds) were observed:

Using apply method: Approximately 1011.71 ms

Using Reduce method: Approximately 793.54 ms

The benchmarking demonstrates that the Reduce function is about 30% faster than applying the cumulative product row-wise.

Conclusion: Opt for Efficiency

In conclusion, when processing large data tables in R, particularly for cumulative operations, leveraging the Reduce function can significantly enhance performance. While apply may provide readability, the efficiency of Reduce for this specific use case is substantially superior. As always, understanding your data and testing multiple approaches is key to optimizing performance in your data analysis workflows.

By embracing best practices and utilizing effective benchmarking, data analysts can ensure faster computations without compromising result accuracy.

Remember, a well-structured data.table and an efficient computing strategy can pave the way for impactful data analysis!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]