Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Drop Rows in Pandas DataFrame Based on Multiple Conditions

  • vlogize
  • 2025-09-10
  • 0
How to Drop Rows in Pandas DataFrame Based on Multiple Conditions
Drop rows in pandas dataframe based on multiple conditions (one is regex)pythonpandasdataframe
  • ok logo

Скачать How to Drop Rows in Pandas DataFrame Based on Multiple Conditions бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Drop Rows in Pandas DataFrame Based on Multiple Conditions или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Drop Rows in Pandas DataFrame Based on Multiple Conditions бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Drop Rows in Pandas DataFrame Based on Multiple Conditions

Learn how to efficiently drop rows in a pandas DataFrame based on complex conditions, including regex patterns.
---
This video is based on the question https://stackoverflow.com/q/62290147/ asked by the user 'anarchy' ( https://stackoverflow.com/u/11693768/ ) and on the answer https://stackoverflow.com/a/62290365/ provided by the user 'CopyOfA' ( https://stackoverflow.com/u/13014864/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Drop rows in pandas dataframe based on multiple conditions (one is regex)

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Drop Rows in Pandas DataFrame Based on Multiple Conditions

When working with data in pandas, it’s common to encounter situations where you need to drop certain rows under specific conditions. This can include needing to filter data based on regex patterns or handling duplicate values strategically. In this guide, I will guide you through a practical example of solving these problems using pandas, specifically focusing on dropping rows from a DataFrame based on multiple conditions, including regex matching.

The Problem

Let's say you have a pandas DataFrame named df, structured like this:

value1value2value3...0ATG CX AsetB......1CTG CX BsetB......2AAGsetA......3AAGsetB......4CTGsetA......5CTG CX CsetB......6GGGsetA......7ATGsetA......8AAG CX AsetB......9GGGsetB......10A7TsetB......You want to achieve two main goals:

Drop rows where value1 contains strings that end with CX followed by any character.

If the same value1 appears in both setA and setB, keep the row with setA and drop the one with setB.

Ultimately, your final DataFrame should look like this:

value1value2value3...2AAGsetA......4CTGsetA......6GGGsetA......7ATGsetA......10A7TsetB......The Solution

To achieve the desired outcome, we can break down the solution into several steps:

Step 1: Create the DataFrame

First, let’s define a simple DataFrame for our example:

[[See Video to Reveal this Text or Code Snippet]]

This will create the DataFrame that resembles the initial table displayed earlier.

Step 2: Dropping Rows with Regex Condition

To drop rows where value1 ends with CX followed by a random letter, we will use the str.contains() method with regex, along with the ~ operator to negate the condition. Here’s the code:

[[See Video to Reveal this Text or Code Snippet]]

In this step, we are filtering the DataFrame to exclude any rows that meet the regex condition.

Step 3: Dropping Duplicates Based on Value1

Now that we’ve filtered out the unwanted rows, we will handle the duplicates. We want to keep the first occurrence of each value1 for setA if it appears in both setA and setB. We can achieve this using drop_duplicates(), which is very straightforward:

[[See Video to Reveal this Text or Code Snippet]]

Final Result

After executing the above steps, you will have a DataFrame that meets your specified conditions. The final DataFrame looks like this:

value1value2value3...2AAGsetA......4CTGsetA......6GGGsetA......7ATGsetA......10A7TsetB......Conclusion

With the provided steps, you can easily filter unwanted rows in a pandas DataFrame based on complex conditions, including the use of regex. Whether you're cleaning data or preparing it for analysis, pandas' powerful functionalities allow you to handle these tasks efficiently. For any data wrangling work, understanding how to use these tools can greatly enhance your productivity.

Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]