Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть OMR Checker Using OpenCV, Image Processing, NumPy, and Flask

  • ASHAD ZAMAN
  • 2024-06-14
  • 228
OMR Checker Using OpenCV, Image Processing, NumPy, and Flask
omrOMR sheet CheckerOptical mark recognitionfree codesource codeschool omrpythonopen cvflasknumpyimage processingbaizid md ashadzzaman[email protected][email protected]AIcomputer vision
  • ok logo

Скачать OMR Checker Using OpenCV, Image Processing, NumPy, and Flask бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно OMR Checker Using OpenCV, Image Processing, NumPy, and Flask или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку OMR Checker Using OpenCV, Image Processing, NumPy, and Flask бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео OMR Checker Using OpenCV, Image Processing, NumPy, and Flask

Project Description: OMR Checker Using OpenCV, Image Processing, NumPy, and Flask
Overview
The OMR (Optical Mark Recognition) Checker is a web-based application designed to automatically evaluate student answer sheets in real-time using a webcam. The application leverages OpenCV for image processing, NumPy for numerical operations, and Flask to provide a user-friendly web interface. This system aims to simplify and speed up the process of checking multiple-choice answer sheets by automating the evaluation process.

Features
Real-time Image Capture: Uses a webcam to capture images of the answer sheets.
Image Preprocessing: Applies image processing techniques such as thresholding, noise reduction, and contour detection to prepare the image for analysis.
OMR Detection: Identifies and interprets marked bubbles on the answer sheets using OpenCV and NumPy.
Score Calculation: Compares the detected marks against an answer key to calculate scores.
Web Interface: Provides an easy-to-use interface built with Flask for uploading answer keys, viewing results, and managing the process.
Data Storage: Stores results and answer keys for future reference and analysis.
Technical Details
OpenCV for Image Processing:

Thresholding: Converts captured images to binary format for better bubble detection.
Contour Detection: Identifies the marked regions (bubbles) on the OMR sheet.
Perspective Transform: Corrects any skew or orientation issues in the captured image.
NumPy for Numerical Operations:

Efficient handling of image matrices.
Calculation of marked responses by analyzing pixel values.
Flask for Web Interface:

Routes for uploading answer keys and captured images.
Endpoints for processing images and returning results.
HTML templates for displaying scores and detailed reports.
Workflow
Initialization:

Start the Flask server.
Access the web application via a browser.
Answer Key Upload:

Upload the correct answers for the OMR sheet via the web interface.
Capture and Process OMR Sheets:

Use the webcam to capture an image of the student's answer sheet.
The image is processed to detect marked bubbles.
Score Calculation:

The system compares detected marks with the answer key.
Scores are calculated and displayed on the web interface.
Results and Analysis:

View detailed results, including correct and incorrect responses.
Option to save or print the results for record-keeping.
Benefits
Efficiency: Significantly reduces the time required to check and score multiple-choice exams.
Accuracy: Minimizes human error in the evaluation process.
Real-time Processing: Immediate feedback on student performance.
User-Friendly Interface: Easy to navigate and operate, even for users with minimal technical knowledge.
Conclusion
The OMR Checker using OpenCV, NumPy, and Flask is a powerful tool designed to streamline the evaluation of multiple-choice exams. By integrating real-time image processing with a web-based interface, it offers a practical solution for educational institutions to handle large volumes of answer sheets efficiently and accurately.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]