Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Solving the Issue of Appending Scraped Information to Lists with Python Multi-threading

  • vlogize
  • 2025-04-06
  • 0
Solving the Issue of Appending Scraped Information to Lists with Python Multi-threading
Appending scrapped information to lists with python multi-threading resulting in 0 listspythonselenium webdriverpython multithreadingconcurrent.futures
  • ok logo

Скачать Solving the Issue of Appending Scraped Information to Lists with Python Multi-threading бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Solving the Issue of Appending Scraped Information to Lists with Python Multi-threading или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Solving the Issue of Appending Scraped Information to Lists with Python Multi-threading бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Solving the Issue of Appending Scraped Information to Lists with Python Multi-threading

Discover how to effectively collect results when using Python multi-threading for web scraping with Selenium. Learn the best practices to return and combine your scraped data.
---
This video is based on the question https://stackoverflow.com/q/77039769/ asked by the user 'Tzeboys' ( https://stackoverflow.com/u/18067334/ ) and on the answer https://stackoverflow.com/a/77040648/ provided by the user 'Emilio Silva' ( https://stackoverflow.com/u/367381/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Appending scrapped information to lists with python multi-threading resulting in 0 lists

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Overcoming the Challenges of Appending Scraped Data in Python Multi-threading

When diving into the realm of web scraping using Python, especially with the aid of libraries like Selenium and Beautiful Soup, you may encounter an array of hurdles. One such notable problem arises when trying to append scraped information to lists while implementing multi-threading. Many developers see their lists coming out empty or only partially filled, despite their code functioning correctly when executed sequentially. Let’s break down this prevalent issue and explore a coherent solution.

Understanding the Problem

In a typical multi-threading setup using concurrent.futures, one may initiate tasks in parallel that are designed to scrape data from various URLs. However, due to the nature of multi-threading and how Python handles shared data, you may find that not all threads share the lists where you are trying to append your results. This can lead to minimal or even zero data being collected, which can be quite frustrating.

Key Points to Consider:

Thread Isolation: Each thread operates independently, making it difficult to share and append data to a global list.

Data Collection: Relying on global variables for storing data from threads could lead to race conditions or incomplete data.

The Solution: Collecting Results with Futures

To effectively gather results from your threads, you need to adjust your approach slightly. Here’s a step-by-step guide to amend your existing code for proper data collection.

Step 1: Modify the Get_info Function

Instead of directly appending data to global lists, you should return results from the Get_info function. A good practice is to use a dictionary that encapsulates all the required information.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Use Futures to Collect Results

In your main execution logic, use the Future objects returned from the submit function to wait for and collect results across all threads. Here’s how to make those modifications:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Combine the Results

After collecting results, you can consolidate them into the final data structure, such as a DataFrame before exporting to Excel.

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By utilizing the power of concurrent.futures and returning structured results from your threads, you can overcome the challenges associated with collecting scraped data in a multi-threaded environment. This method provides a streamlined approach to gather all your data correctly and efficiently. Embrace these adjustments and watch your Python scraping projects flourish without the pain of empty lists!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]