Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Stefano De Marco: Some asymptotic results about American options and volativity

  • Centre International de Rencontres Mathématiques
  • 2017-08-28
  • 1007
Stefano De Marco: Some asymptotic results about American options and volativity
CirmCNRSSMFMathematicsmathématiquesMarseilleLuminyCentre international de rencontres mathématiques
  • ok logo

Скачать Stefano De Marco: Some asymptotic results about American options and volativity бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Stefano De Marco: Some asymptotic results about American options and volativity или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Stefano De Marco: Some asymptotic results about American options and volativity бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Stefano De Marco: Some asymptotic results about American options and volativity

Abstract: The valuation of American options (a widespread type of financial contract) requires the numerical solution of an optimal stopping problem. Numerical methods for such problems have been widely investigated. Monte-Carlo methods are based on the implementation of dynamic programming principles coupled with regression techniques. In lower dimension, one can choose to tackle the related free boundary PDE with deterministic schemes.
Pricing of American options will therefore be inevitably heavier than the one of European options, which only requires the computation of a (linear) expectation. The calibration (fitting) of a stochastic model to market quotes for American options is therefore an a priori demanding task. Yet, often this cannot be avoided: on exchange markets one is typically provided only with market quotes for American options on single stocks (as opposed to large stock indexes - e.g. S&P500 - for which large amounts of liquid European options are typically available).
In this talk, we show how one can derive (approximate, but accurate enough) explicit formulas - therefore replacing other numerical methods, at least in a low-dimensional case - based on asymptotic calculus for diffusions.
More precisely: based on a suitable representation of the PDE free boundary, we derive an approximation of this boundary close to final time that refines the expansions known so far in the literature. Via the early premium formula, this allows to derive semi-closed expressions for the price of the American put/call. The final product is a calibration recipe of a Dupire's local volatility to American option data.
Based on joint work with Pierre Henry-Labordère.

Recording during the CEMRACS 2017 "Numerical Methods for Stochastic Models: Control, Uncertainty Quantification, Mean-field " the August 02, 2017 at the Centre International de Rencontres Mathématiques (Marseille, France)
Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities:
Chapter markers and keywords to watch the parts of your choice in the video
Videos enriched with abstracts, bibliographies, Mathematics Subject Classification
Multi-criteria search by author, title, tags, mathematical area

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]