Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Create Multiple Rows from a Single Row in Pandas DataFrame

  • vlogize
  • 2025-03-27
  • 1
How to Create Multiple Rows from a Single Row in Pandas DataFrame
How to create miultiple rows from a single row?pythonpandasdataframe
  • ok logo

Скачать How to Create Multiple Rows from a Single Row in Pandas DataFrame бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Create Multiple Rows from a Single Row in Pandas DataFrame или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Create Multiple Rows from a Single Row in Pandas DataFrame бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Create Multiple Rows from a Single Row in Pandas DataFrame

Learn how to expand your data in a Pandas DataFrame by transforming single rows into multiple rows based on column values with clear, step-by-step instructions.
---
This video is based on the question https://stackoverflow.com/q/75313394/ asked by the user 'user21126867' ( https://stackoverflow.com/u/21126867/ ) and on the answer https://stackoverflow.com/a/75314244/ provided by the user 'Celius Stingher' ( https://stackoverflow.com/u/11897007/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to create miultiple rows from a single row?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Create Multiple Rows from a Single Row in Pandas DataFrame

Introduction

In data manipulation, there are scenarios where you need to expand a single row of a DataFrame into multiple rows. This often occurs when you have a column that specifies a number of repetitions or segregation of data into finer details. In this guide, we'll explore how you can do just that using Python's Pandas library.

We'll break down the problem with a clear example and then walk through the steps of the solution to transform your DataFrame efficiently.

The Problem

Let's say you have an Excel sheet with a DataFrame structured like this:

Id-ofweeksManhoursStartDateEndDateStartingyearStartingWeekaaa2101/15/20231/29/202320233bbb3122/12/20233/05/202320237Your goal is to expand this DataFrame so that each entry is repeated according to the number of weeks (-ofweeks). You want to enrich this DataFrame by adding columns that count the number of weeks and indicate the year for each week defined by Year and Week-.

The desired output should look similar to:

Id-ofweeksManhoursStartDateEndDateStartingyearStartingWeekWeekCountYearWeek-aaa2101/15/20231/29/202320233120233aaa2101/15/20231/29/202320233220234bbb3122/12/20233/05/202320237120237bbb3122/12/20233/05/202320237220238bbb3122/12/20233/05/2023202373202310The Solution

Step 1: Import Necessary Libraries

First, ensure you have the required libraries. Run the following code to import Pandas:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Expand the DataFrame

You will need to first define the way to replicate each row based on -ofweeks. Below is an efficient way to achieve this in Pandas:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Add Columns for Week Count, Year, and Week Number

Now that we have expanded the DataFrame, we can create the additional columns:

Week Count

To create a column for the count of weeks:

[[See Video to Reveal this Text or Code Snippet]]

Year Calculation

For years that can span across more than one calendar year:

[[See Video to Reveal this Text or Code Snippet]]

Week Number Calculation

For calculating the week number:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By following these steps, you can effectively expand a single row into multiple rows in a Pandas DataFrame, accounting for weeks as specified in your dataset. This technique is essential when working with time-based data, allowing for a clearer view of tasks and assignments.

Now that you know how to transform your DataFrame, try this on your dataset and see how it enhances your data manipulation tasks!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]