Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Itiel Shwartz @ AIDevTLV '25 | From Chaos to Quality – A Big Data Approach to Agentic System

  • AIDevTLV
  • 2025-12-31
  • 7
Itiel Shwartz @ AIDevTLV '25 | From Chaos to Quality – A Big Data Approach to Agentic System
  • ok logo

Скачать Itiel Shwartz @ AIDevTLV '25 | From Chaos to Quality – A Big Data Approach to Agentic System бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Itiel Shwartz @ AIDevTLV '25 | From Chaos to Quality – A Big Data Approach to Agentic System или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Itiel Shwartz @ AIDevTLV '25 | From Chaos to Quality – A Big Data Approach to Agentic System бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Itiel Shwartz @ AIDevTLV '25 | From Chaos to Quality – A Big Data Approach to Agentic System

AIDevTLV 2025
aidevtlv.com
Israel's largest conference for LLM App developers
Powered by EventHandler and AT&T

Building reliable agentic AI systems in production environments presents unique challenges when dealing with massive, noisy datasets. This talk shares hard-won lessons from developing Klaudia, Komodor's AI agent that processes millions of Kubernetes events daily to deliver autonomous troubleshooting with 95%+ accuracy.

The fundamental challenge isn't LLM capability—it's building systems that maintain reliability when 90% of your data is noise. We'll explore why most agentic AI fails in production: hallucinations masquerading as insights, inability to validate reasoning chains, and the brittle nature of RAG systems when dealing with complex, interconnected failure modes.

This session covers practical know-how learned through painful production iterations: how to build validation frameworks that catch LLM errors before they reach users, architectural patterns for constraining problem spaces without losing effectiveness, and techniques for creating evidence-based reasoning that can be audited and improved systematically.

You'll learn specific strategies for LLM validation in high-stakes environments, including confidence scoring systems, multi-agent verification patterns, and iterative investigation loops that prevent runaway reasoning. We'll cover the hard-earned lessons about what works and what spectacularly fails when building trustworthy AI agents that must deliver accurate results rather than plausible-sounding explanations.

Itiel is the CTO and co-founder of Komodor, a startup building the first Kubernetes-native troubleshooting platform. A big believer in dev empowerment and moving fast, he has worked at eBay, Forter and Rookout (as the founding engineer). Itiel is a backend and infra developer turned “DevOps”, an avid public speaker that loves talking about things such as cloud infrastructure, Kubernetes, Python, observability, and R&D culture.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]