Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Resolving Matrix Subtraction Confusion in Python

  • vlogize
  • 2025-10-10
  • 0
Resolving Matrix Subtraction Confusion in Python
Matrix substraction in Python error or confusionpythonpython 3.xnumpymachine learning
  • ok logo

Скачать Resolving Matrix Subtraction Confusion in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Resolving Matrix Subtraction Confusion in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Resolving Matrix Subtraction Confusion in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Resolving Matrix Subtraction Confusion in Python

Learn how to correctly perform matrix subtraction in Python. This guide explains the common errors in matrix operation results and how to achieve scalar-like subtraction using NumPy.
---
This video is based on the question https://stackoverflow.com/q/68426428/ asked by the user 'Giovanni Mosquera' ( https://stackoverflow.com/u/14955955/ ) and on the answer https://stackoverflow.com/a/68426938/ provided by the user 'hpaulj' ( https://stackoverflow.com/u/901925/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Matrix substraction in Python error or confusion

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Matrix Subtraction in Python: Common Issues and Solutions

When working with matrices in Python, especially using libraries like NumPy, it's common to encounter unexpected results. One frequently reported issue is why subtracting one matrix from another yields an unexpected shape. In this guide, we will explore the reasons behind the confusion related to matrix subtraction, particularly focusing on the problem of getting a (1329, 1329) shaped result instead of the expected (1329, 1).

The Problem Explained

Consider the following scenario: you have two matrices, hypotesisResult of size (1329, 1) and y also of size (1329, 1). When you attempt to subtract y from hypotesisResult, you expect the output to be of size (1329, 1). However, you notice that the result is instead (1329, 1329).

This unexpected behavior often stems from the way NumPy handles broadcasting during array operations. Let's break down what is happening and how to avoid such confusion.

Analyzing the Shapes

Here's a recap of the matrix shapes you provided:

dataset.T.shape: (7, 1329)

hypotesisResult.shape: (1329, 1)

y.shape: (1329, 1)

hypotesisResult - y.shape: Expected (1329, 1), actually returns (1329, 1329)

np.subtract(hypotesisResult, y).shape: Also returns (1329, 1329)

Identifying the Issue

When you perform the subtraction operation hypotesisResult - y, both matrices have the same first dimension, which is key for NumPy to process the subtraction as intended.

However, if NumPy tries to broadcast incorrectly—treating the shapes as if they are incompatible—you could receive an output that expands in size rather than focusing on the intended dimensions. This is particularly true if either of the matrices were mistakenly interpreted with different dimensions or types.

Solutions to the Matrix Subtraction Problem

Here are some steps and tips to help resolve this confusion in matrix operations:

1. Rerun and Check Data Types

To ensure that there are no discrepancies in your matrix dimension interpretations, rerun your code and check the data types:

[[See Video to Reveal this Text or Code Snippet]]

2. Use Proper Broadcasting Techniques

NumPy follows specific broadcasting rules. Understanding these will help you manipulate matrices correctly:

Add Leading Dimensions: NumPy can expand dimensions of size 1 to match other arrays.

Adjust Size 1 Dimensions: It will also adjust dimensions with size 1 to match other array shapes.

Example of Correct Subtraction

Here's an example of how to correctly perform subtraction to ensure you receive a (1329, 1) shape:

[[See Video to Reveal this Text or Code Snippet]]

Utilize Reshaping

If needed, you can reshape your matrices to ensure compatibility:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Matrix operations, particularly subtraction, can sometimes lead to confusing output shapes in Python, mainly due to broadcasting and matrix dimensions. By ensuring proper shape alignment and understanding NumPy's broadcasting rules, you can avoid these pitfalls and achieve the desired results in your matrix computations. Remember, when working with matrices, clarity on their dimensions can make a significant difference!

Feel free to reach out with any further questions on matrix operations in Python!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]