Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Slice a DataFrame into Sub-DataFrames Using Specific Strings in Python Pandas

  • vlogize
  • 2025-03-21
  • 3
How to Slice a DataFrame into Sub-DataFrames Using Specific Strings in Python Pandas
Slice Dataframe in sub-dataframes when specific string in column is foundpythonpandasdataframesplitslice
  • ok logo

Скачать How to Slice a DataFrame into Sub-DataFrames Using Specific Strings in Python Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Slice a DataFrame into Sub-DataFrames Using Specific Strings in Python Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Slice a DataFrame into Sub-DataFrames Using Specific Strings in Python Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Slice a DataFrame into Sub-DataFrames Using Specific Strings in Python Pandas

Learn how to efficiently slice a DataFrame into multiple sub-DataFrames based on specific string conditions in Python Pandas with this comprehensive guide.
---
This video is based on the question https://stackoverflow.com/q/75042224/ asked by the user 'Bakira' ( https://stackoverflow.com/u/12741499/ ) and on the answer https://stackoverflow.com/a/75042296/ provided by the user 'Mustafa Aydın' ( https://stackoverflow.com/u/9332187/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Slice Dataframe in sub-dataframes when specific string in column is found

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Slice a DataFrame into Sub-DataFrames Using Specific Strings in Python Pandas

If you're working with data in Python using the Pandas library, you may find yourself needing to slice a DataFrame into smaller subsets based on certain conditions. For example, you may want to create multiple DataFrames from a single DataFrame where each subset starts with specific markers or values in certain columns. This task can seem daunting at first, especially if you encounter issues that result in empty DataFrames. In this guide, we'll explore how to correctly slice a DataFrame into sub-DataFrames when specific strings are found in certain columns.

The Problem Overview

Imagine you have a DataFrame that consists of several columns, including a "Step", "Point", and "X_Y". Your goal is to create a list of sub-DataFrames where each subset contains rows labeled as "Result". Each new sub-DataFrame begins when the "Point" column has the value "P1" and the "X_Y" column has the value "X". If you've tried using index-based slicing but ended up with empty DataFrames, don't worry! There is a more effective way to achieve your goal.

Step-by-Step Solution

To slice the DataFrame based on the requirements outlined, follow these steps:

1. Filter the DataFrame

Firstly, you want to create a subset of the DataFrame that includes only the rows where "Step" equals "Result". This can be done using the query method, which provides a clear and concise way to filter the DataFrame.

[[See Video to Reveal this Text or Code Snippet]]

2. Create a Boolean Index for Pivots

Next, you need to identify the points where a new sub-DataFrame should start. This is achieved by checking for rows that match the conditions of "Point" being "P1" and "X_Y" being "X". The following code will create a Boolean series that indicates where these pivot points are located:

[[See Video to Reveal this Text or Code Snippet]]

3. Group by Pivot Points

Now that you have a series of Boolean values indicating pivot points, the next step is to create groups based on where these pivots occur. The cumulative sum of the Boolean series gives you unique group labels which can be used to segment the DataFrame. Here’s how to achieve this:

[[See Video to Reveal this Text or Code Snippet]]

4. Understanding the Output

After running the above code, you will have a list of sub-DataFrames stored in the variable out. Each sub-DataFrame will only include rows labeled as "Result" and will be grouped according to the defined conditions.

Here’s a quick example of how your final output may look like:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Slicing a DataFrame into sub-DataFrames based on certain conditions can be done efficiently with Pandas. By filtering for relevant rows, creating a Boolean index for pivot detection, and utilizing the groupby function, you can easily achieve your goal without ending up with empty DataFrames. This approach allows for a more intuitive understanding of your data and how it can be manipulated effectively. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]